1,989 research outputs found

    Bounds on the number of eulerian orientations

    Get PDF

    Testing Uniformity of Stationary Distribution

    Full text link
    A random walk on a directed graph gives a Markov chain on the vertices of the graph. An important question that arises often in the context of Markov chain is whether the uniform distribution on the vertices of the graph is a stationary distribution of the Markov chain. Stationary distribution of a Markov chain is a global property of the graph. In this paper, we prove that for a regular directed graph whether the uniform distribution on the vertices of the graph is a stationary distribution, depends on a local property of the graph, namely if (u,v) is an directed edge then outdegree(u) is equal to indegree(v). This result also has an application to the problem of testing whether a given distribution is uniform or "far" from being uniform. This is a well studied problem in property testing and statistics. If the distribution is the stationary distribution of the lazy random walk on a directed graph and the graph is given as an input, then how many bits of the input graph do one need to query in order to decide whether the distribution is uniform or "far" from it? This is a problem of graph property testing and we consider this problem in the orientation model (introduced by Halevy et al.). We reduce this problem to test (in the orientation model) whether a directed graph is Eulerian. And using result of Fischer et al. on query complexity of testing (in the orientation model) whether a graph is Eulerian, we obtain bounds on the query complexity for testing whether the stationary distribution is uniform

    Counting degree-constrained subgraphs and orientations

    Get PDF
    The goal of this short paper to advertise the method of gauge transformations (aka holographic reduction, reparametrization) that is well-known in statistical physics and computer science, but less known in combinatorics. As an application of it we give a new proof of a theorem of A. Schrijver asserting that the number of Eulerian orientations of a dd--regular graph on nn vertices with even dd is at least ((dd/2)2d/2)n\left(\frac{\binom{d}{d/2}}{2^{d/2}}\right)^n. We also show that a dd--regular graph with even dd has always at least as many Eulerian orientations as (d/2)(d/2)--regular subgraphs

    Graphs with many strong orientations

    Full text link
    We establish mild conditions under which a possibly irregular, sparse graph GG has "many" strong orientations. Given a graph GG on nn vertices, orient each edge in either direction with probability 1/21/2 independently. We show that if GG satisfies a minimum degree condition of (1+c1)log2n(1+c_1)\log_2{n} and has Cheeger constant at least c2log2log2nlog2nc_2\frac{\log_2\log_2{n}}{\log_2{n}}, then the resulting randomly oriented directed graph is strongly connected with high probability. This Cheeger constant bound can be replaced by an analogous spectral condition via the Cheeger inequality. Additionally, we provide an explicit construction to show our minimum degree condition is tight while the Cheeger constant bound is tight up to a log2log2n\log_2\log_2{n} factor.Comment: 14 pages, 4 figures; revised version includes more background and minor changes that better clarify the expositio
    corecore