73 research outputs found

    Dominating sets in Kneser graphs

    Get PDF
    This thesis investigates dominating sets in Kneser graphs as well as a selection of other topics related to graph domination. Dominating sets in Kneser graphs, especially those of minimum size, often correspond to interesting combinatorial incidence structures. We begin with background on the dominating set problem and a review of known bounds, focusing on algebraic bounds. We then consider this problem in the Kneser graphs, discussing basic results and previous work. We compute the domination number for a few of the Kneser graphs with the aid of some original results. We also investigate the connections between Kneser graph domination and the theory of combinatorial designs, and introduce a new type of design that generalizes the properties of dominating sets in Kneser graphs. We then consider dominating sets in the vector space analogue of Kneser graphs. We end by highlighting connections between the dominating set problem and other areas of combinatorics. Conjectures and open problems abound

    Grundy domination and zero forcing in Kneser graphs

    Get PDF
    In this paper, we continue the investigation of different types of (Grundy) dominating sequences. We consider four different types of Grundy domination numbers and the related zero forcing numbers, focusing on these numbers in the well-known class of Kneser graphs Kn,r. In particular, we establish that the Grundy total domination number γ t gr(Kn,r) equals 2r r for any r ≥ 2 and n ≥ 2r + 1. For the Grundy domination number of Kneser graphs we get γgr(Kn,r) = α(Kn,r) whenever n is sufficiently larger than r. On the other hand, the zero forcing number Z(Kn,r) is proved to be n r − 2r r when n ≥ 3r + 1 and r ≥ 2, while lower and upper bounds are provided for Z(Kn,r) when 2r + 1 ≤ n ≤ 3r. Some lower bounds for different types of minimum ranks of Kneser graphs are also obtained along the way.Fil: Bresar, Bostjan. University of Maribor; Eslovenia. Institute Of Mathematics, Physics And Mechanics Ljubljana; EsloveniaFil: Kos, Tim. Institute Of Mathematics, Physics And Mechanics Ljubljana; EsloveniaFil: Torres, Pablo Daniel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentin

    Investigations in the semi-strong product of graphs and bootstrap percolation

    Get PDF
    The semi-strong product of graphs G and H is a way of forming a new graph from the graphs G and H. The vertex set of the semi-strong product is the Cartesian product of the vertex sets of G and H, V(G) x V(H). The edges of the semi-strong product are determined as follows: (g1,h1)(g2,h2) is an edge of the product whenever g1g2 is an edge of G and h1h2 is an edge of H or g1 = g2 and h1h2 is an edge of H. A natural subject for investigation is to determine properties of the semi-strong product in terms of those properties of its factors. We investigate distance, independence, matching, and domination in the semi-strong product Bootstrap Percolation is a process defined on a graph. We begin with an initial set of infected vertices. In each subsequent round, uninfected vertices become infected if they are adjacent to at least r infected vertices. Once infected, vertices remain infected. The parameter r is called the percolation threshold. When G is finite, the infection either stops at a proper subset of G or all of V(G) becomes infected. If all of V(G) eventually becomes infected, then we say that the infection percolates and we call the initial set of infected vertices a percolating set. The cardinality of a minimum percolating set of G with percolation threshold r is denoted m(G,r). We determine m(G,r) for certain Kneser graphs and bipartite Kneser graphs

    Identifying codes in vertex-transitive graphs and strongly regular graphs

    Get PDF
    We consider the problem of computing identifying codes of graphs and its fractional relaxation. The ratio between the size of optimal integer and fractional solutions is between 1 and 2ln(vertical bar V vertical bar) + 1 where V is the set of vertices of the graph. We focus on vertex-transitive graphs for which we can compute the exact fractional solution. There are known examples of vertex-transitive graphs that reach both bounds. We exhibit infinite families of vertex-transitive graphs with integer and fractional identifying codes of order vertical bar V vertical bar(alpha) with alpha is an element of{1/4, 1/3, 2/5}These families are generalized quadrangles (strongly regular graphs based on finite geometries). They also provide examples for metric dimension of graphs

    On the number of k-dominating independent sets

    Get PDF
    We study the existence and the number of kk-dominating independent sets in certain graph families. While the case k=1k=1 namely the case of maximal independent sets - which is originated from Erd\H{o}s and Moser - is widely investigated, much less is known in general. In this paper we settle the question for trees and prove that the maximum number of kk-dominating independent sets in nn-vertex graphs is between ck⋅22knc_k\cdot\sqrt[2k]{2}^n and ck′⋅2k+1nc_k'\cdot\sqrt[k+1]{2}^n if k≥2k\geq 2, moreover the maximum number of 22-dominating independent sets in nn-vertex graphs is between c⋅1.22nc\cdot 1.22^n and c′⋅1.246nc'\cdot1.246^n. Graph constructions containing a large number of kk-dominating independent sets are coming from product graphs, complete bipartite graphs and with finite geometries. The product graph construction is associated with the number of certain MDS codes.Comment: 13 page

    On the diameter and zero forcing number of some graph classes in the Johnson, Grassmann and Hamming association scheme

    Full text link
    We establish the diameter of generalized Grassmann graphs and the zero forcing number of some generalized Johnson graphs, generalized Grassmann graphs and the Hamming graphs. Our work extends several previously known results
    • …
    corecore