5,387 research outputs found

    Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap

    Full text link
    An open-loop single-user multiple-input multiple-output communication scheme is considered where a transmitter, equipped with multiple antennas, encodes the data into independent streams all taken from the same linear code. The coded streams are then linearly precoded using the encoding matrix of a perfect linear dispersion space-time code. At the receiver side, integer-forcing equalization is applied, followed by standard single-stream decoding. It is shown that this communication architecture achieves the capacity of any Gaussian multiple-input multiple-output channel up to a gap that depends only on the number of transmit antennas.Comment: to appear in the IEEE Transactions on Information Theor

    On Achievable Rates for Long-Haul Fiber-Optic Communications

    Full text link
    Lower bounds on mutual information (MI) of long-haul optical fiber systems for hard-decision and soft-decision decoding are studied. Ready-to-use expressions to calculate the MI are presented. Extensive numerical simulations are used to quantify how changes in the optical transmitter, receiver, and channel affect the achievable transmission rates of the system. Special emphasis is put to the use of different quadrature amplitude modulation formats, channel spacings, digital back-propagation schemes and probabilistic shaping. The advantages of using MI over the prevailing QQ-factor as a figure of merit of coded optical systems are also highlighted.Comment: Hard decision mutual information analysis added, two typos correcte

    Spectral Efficiency Optimization in Flexi-Grid Long-Haul Optical Systems

    Full text link
    Flexible grid optical networks allow a better exploitation of fiber capacity, by enabling a denser frequency allocation. A tighter channel spacing, however, requires narrower filters, which increase linear intersymbol interference (ISI), and may dramatically reduce system reach. Commercial coherent receivers are based on symbol by symbol detectors, which are quite sensitive to ISI. In this context, Nyquist spacing is considered as the ultimate limit to wavelength-division multiplexing (WDM) packing. In this paper, we show that by introducing a limited-complexity trellis processing at the receiver, either the reach of Nyquist WDM flexi-grid networks can be significantly extended, or a denser-than-Nyquist channel packing (i.e., a higher spectral efficiency (SE)) is possible at equal reach. By adopting well-known information-theoretic techniques, we design a limited-complexity trellis processing and quantify its SE gain in flexi-grid architectures where wavelength selective switches over a frequency grid of 12.5GHz are employed.Comment: 7 pages, 9 figure

    Improved Lower Bounds on Mutual Information Accounting for Nonlinear Signal-Noise Interaction

    Get PDF
    In fiber-optic communications, evaluation of mutual information (MI) is still an open issue due to the unavailability of an exact and mathematically tractable channel model. Traditionally, lower bounds on MI are computed by approximating the (original) channel with an auxiliary forward channel. In this paper, lower bounds are computed using an auxiliary backward channel, which has not been previously considered in the context of fiber-optic communications. Distributions obtained through two variations of the stochastic digital backpropagation (SDBP) algorithm are used as auxiliary backward channels and these bounds are compared with bounds obtained through the conventional digital backpropagation (DBP). Through simulations, higher information rates were achieved with SDBP, {which can be explained by the ability of SDBP to account for nonlinear signal--noise interactionsComment: 8 pages, 5 figures, accepted for publication in Journal of Lightwave Technolog

    Conditions for a Monotonic Channel Capacity

    Full text link
    Motivated by results in optical communications, where the performance can degrade dramatically if the transmit power is sufficiently increased, the channel capacity is characterized for various kinds of memoryless vector channels. It is proved that for all static point-to-point channels, the channel capacity is a nondecreasing function of power. As a consequence, maximizing the mutual information over all input distributions with a certain power is for such channels equivalent to maximizing it over the larger set of input distributions with upperbounded power. For interference channels such as optical wavelength-division multiplexing systems, the primary channel capacity is always nondecreasing with power if all interferers transmit with identical distributions as the primary user. Also, if all input distributions in an interference channel are optimized jointly, then the achievable sum-rate capacity is again nondecreasing. The results generalizes to the channel capacity as a function of a wide class of costs, not only power.Comment: This is an updated and expanded version of arXiv:1108.039

    Gaussian Multiple and Random Access in the Finite Blocklength Regime

    Get PDF
    This paper presents finite-blocklength achievabil- ity bounds for the Gaussian multiple access channel (MAC) and random access channel (RAC) under average-error and maximal-power constraints. Using random codewords uniformly distributed on a sphere and a maximum likelihood decoder, the derived MAC bound on each transmitter’s rate matches the MolavianJazi-Laneman bound (2015) in its first- and second-order terms, improving the remaining terms to ½ log n/n + O(1/n) bits per channel use. The result then extends to a RAC model in which neither the encoders nor the decoder knows which of K possible transmitters are active. In the proposed rateless coding strategy, decoding occurs at a time n t that depends on the decoder’s estimate t of the number of active transmitters k. Single-bit feedback from the decoder to all encoders at each potential decoding time n_i, i ≤ t, informs the encoders when to stop transmitting. For this RAC model, the proposed code achieves the same first-, second-, and third-order performance as the best known result for the Gaussian MAC in operation

    Influence of Behavioral Models on Multiuser Channel Capacity

    Full text link
    In order to characterize the channel capacity of a wavelength channel in a wavelength-division multiplexed (WDM) system, statistical models are needed for the transmitted signals on the other wavelengths. For example, one could assume that the transmitters for all wavelengths are configured independently of each other, that they use the same signal power, or that they use the same modulation format. In this paper, it is shown that these so-called behavioral models have a profound impact on the single-wavelength achievable information rate. This is demonstrated by establishing, for the first time, upper and lower bounds on the maximum achievable rate under various behavioral models, for a rudimentary WDM channel model

    Performance Prediction of Nonbinary Forward Error Correction in Optical Transmission Experiments

    Get PDF
    In this paper, we compare different metrics to predict the error rate of optical systems based on nonbinary forward error correction (FEC). It is shown that the correct metric to predict the performance of coded modulation based on nonbinary FEC is the mutual information. The accuracy of the prediction is verified in a detailed example with multiple constellation formats, FEC overheads in both simulations and optical transmission experiments over a recirculating loop. It is shown that the employed FEC codes must be universal if performance prediction based on thresholds is used. A tutorial introduction into the computation of the threshold from optical transmission measurements is also given.Comment: submitted to IEEE/OSA Journal of Lightwave Technolog
    • …
    corecore