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Improved Lower Bounds on Mutual Information
Accounting for Nonlinear Signal–Noise Interaction

Naga V. Irukulapati, Marco Secondini,Senior Member, IEEE, Erik Agrell, Fellow, IEEE, Pontus Johannisson, and
Henk Wymeersch,Member, IEEE

Abstract—In fiber-optic communications, evaluation of mutual
information (MI) is still an open issue due to the unavailability
of an exact and mathematically tractable channel model. Tradi-
tionally, lower bounds on MI are computed by approximating
the (original) channel with an auxiliary forward channel. I n this
paper, lower bounds are computed using an auxiliary backward
channel, which has not been previously considered in the context
of fiber-optic communications. Distributions obtained through
two variations of the stochastic digital backpropagation (SDBP)
algorithm are used as auxiliary backward channels and these
bounds are compared with bounds obtained through the con-
ventional digital backpropagation (DBP). Through simulations,
higher information rates were achieved with SDBP, which can
be explained by the ability of SDBP to account for nonlinear
signal–noise interactions.

Index Terms—Achievable information rate, auxiliary channel,
fiber-optical communications, mismatched decoding, nonlinear
compensation, stochastic digital backpropagation.

I. I NTRODUCTION

Shannon proved that reliable communication through a
noisy channel is possible with channel coding, as long as the
information rate is less than the channel capacity [1]. For any
fixed input distribution, the mutual information (MI) gives
a lower bound on the channel capacity. MI is also shown
to be a better metric than the pre-forward-error-correction
bit-error rate for estimating the post-forward-error-correction
bit-error rate in soft-decision forward-error-correction systems
[2]–[5]. For a discrete-time channel with memory, the MI
between random vectorsX , (X1, X2, . . . , XK) and Y ,

(Y1, Y2, . . . , YJ) with J ≥ K is defined as1

I(X;Y) = EX,Y

[

log
p(Y|X)

p(Y)

]

= EX,Y

[

log
p(X|Y)

p(X)

]

(1)
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1All logarithms in this paper are in base2; therefore, MI will be measured
in bits. To simplify the notation, we usedp(y|x), p(x), andp(y) instead of
explicitly writing pY|X(y|x), pX(x), andpY(y). So,p(y|x), p(x), p(y),
and their auxiliary counterparts refer to different distributions. For the limit
in (2) to exist, we assume the existence of sequences of distributionsp(y|x),
p(x), andp(y) for K = 1, 2, . . .

wherex = (x1, x2, . . . , xK) ∈ X is a realization ofX drawn
from the input distributionp(x), andy = (y1, y2, . . . , yJ) ∈ Y
is a realization of the corresponding output random vector
Y. p(y|x) is the channel conditional distribution,p(y) =
∫

X
p(x)p(y|x)dx is the output distribution, andEX,Y[.] is

expectation over the joint distributionp(x,y) = p(y|x)p(x) =
p(x|y)p(y). The information rate between the ergodic pro-
cesses for the channel with memory is [6]

Imem = lim
K,J→∞

1

K
I(X;Y). (2)

It is often the case, especially for the fiber-optic channel,
that the channel distributions,p(y|x) and p(x|y), are not
known in closed form. Hence, the MI of (1) and subsequently
the information rate of (2) cannot be computed in closed
form. The information rate of (2) can, in principle, be es-
timated through simulations using the forward recursion of
the BCJR algorithm [6]. The complexity of this simulation-
based technique increases exponentially with channel memory
and requires knowledge of the channel model. There are
at least three different ways in which the problem of the
exponential memory for the BCJR algorithm is currently
addressed: limiting the memory by truncation [7], [8]; using
digital backpropagation (DBP) before the BCJR algorithm
[11], [12]; or using low-complexity variations of the BCJR
algorithm to reduce the complexity. By employing one of
these techniques, the information rate obtained will be a
lower bound on the maximum achievable information rate. The
problem of not knowing the exact channel model is solved by
using an approximation of the channel model [7]–[10], [13].
In this paper, instead of using the forward recursion of the
BCJR algorithm, we use distributions obtained from stochastic
digital backpropagation (SDBP) [14], which accounts for the
memory of the fiber-optic channel channel and provides an
approximate posterior distribution that can be used to compute
lower bounds on the MI. In contrast to the forward recursion
of the BCJR algorithm, the complexity of SDBP does not
grow exponentially as a function of the channel memory. In
[9], ring constellations are used as input distributions and a
memoryless channel is assumed after DBP is applied to the
center channel in a wavelength division multiplexing system.
In [10], a new channel model for a wavelength division multi-
plexed system (after using DBP for the channel of interest) is
introduced and an AIR is computed using this channel model
as an auxiliary forward channel. In [15], a channel based on
a finite-memory Gaussian noise model is studied, which is
different from the channel used in this paper.
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Most of these techniques fall into the category of mis-
matched decoding [16], [17]. In mismatched decoding, the
original distributionsp(y|x) or p(x|y) are approximated with
auxiliary distributions and the rates computed using theseaux-
iliary distributions are a lower bound on the MI. The better the
auxiliary distribution approximates the original distribution,
the closer are these bounds to the MI. Before proceeding, we
define four entities, similar to [18, Fig. 1], that will be used
throughout the paper:

• p(y|x) is the original forward channel;
• p(x|y) is the original backward channel;
• q(y|x) is an auxiliary forward channel;
• r(x|y) is an auxiliary backward channel;

We define a backward channel by reversing the usual meaning
of X andY, i.e., looking atX as being the output of some
channel which is fed byY, which in turn is produced by some
source [18], [24]. Note that the original backward channel is
associated with the original forward channel using Bayes’ rule
as p(x|y) = p(y|x)p(x)/p(y). However, it is not necessary
that such a relation exists between auxiliary channels, i.e.,
r(x|y) can be any conditional distribution which does not
correspond2 to any auxiliary forward channelq(y|x). We
discuss this problem in more detail in Sec. II-B.

For the fiber-optic channel, the most commonly used ap-
proach to lower-bound the MI is to approximate the original
forward channel with an auxiliary forward channel [5], [7],[8],
[10], [13], [19]–[21]. A receiver that is optimal for an auxiliary
forward channel is used to process the data generated from the
original forward channel and to compute an information rate.
This rate is achievable by that receiver and, for this reason,
is often referred to as an achievable information rate (AIR)
[6], [10], [22]. In [19], [20], a circularly symmetric AWGN
channel is used as an auxiliary channel and AIRs are computed
both for soft-decision and hard-decision systems. In [21],AIRs
are computed using 4-dimensional Gaussian distributions as
auxiliary channel. Both techniques are evaluated in this paper
for benchmarking purposes.

An alternative approach to lower-bound the MI is through a
direct use of the auxiliary backward channel. The concept of
auxiliary backward channel was used for the first time in the
context of universal decoding for memoryless channels with
deterministic interference [24]. An auxiliary backward channel
is used instead of an auxiliary forward channel to maximize
the lower bound using an iterative procedure [18].

Contributions of the paper: In this paper, lower bounds are
computed using an auxiliary backward channel, which has
not been previously considered in the context of fiber-optic
communications. Specifically, distributions obtained from two
variations of the SDBP algorithm are used as auxiliary back-
ward channels, namely from symbol-by-symbol SDBP (SBS-
SDBP) [14] and Gaussian message passing SDBP (GMP-
SDBP) [25]. Through simulations, the AIR computed using
these two variants of SDBP was observed to be higher than
the AIR obtained using the conventional DBP algorithm.

Organization of the paper: Similarities and differences in

2To highlight this difference, we chose to user(x|y) for an auxiliary
backward channel instead ofq(x|y).

the computation of lower bounds on the MI using an auxiliary
forward channel and auxiliary backward channel are described
in Sec. II. Computation of AIRs for the fiber-optic channel
is considered in Sec. III, where SBS-SDBP and GMP-SDBP
are described briefly, leading to a discussion on how auxiliary
backward channels are obtained using these two approaches.
AIRs computed using these two versions of SDBP are then
compared with DBP. Numerical results are presented and
discussed in Sec. IV, followed by conclusions in Sec. V.

II. L OWER BOUNDS ON MUTUAL INFORMATION

A. Lower Bounds using Auxiliary Forward Channel q(y|x)

A lower bound on the MI using an auxiliary forward channel
is [6, Eq. (41)]

I(X;Y) ≥ Iq(X;Y) = EX,Y

[

log
q(Y|X)

q(Y)

]

(3)

whereq(y) ,
∫

X
p(x)q(y|x)dx is the output distribution ob-

tained by connecting the original sourcep(x) to the auxiliary
forward channel. This lower bound,Iq(X;Y) of (3), can be
achieved by using a maximum a posteriori detector designed
for the auxiliary forward channel and used as a receiver for the
original forward channel [16], [22]. Since the data generated
by the original forward channel is processed by a receiver
that is optimized for a different auxiliary forward channel,
this approach is known as mismatched decoding.

Using the Kullback–Leibler divergence [26, Sec. 8.1], it can
be easily verified [6, Eq. (34)–(41)] that (3) is indeed a lower
bound,

I(X;Y) − Iq(X;Y) = D(p(x,y)||p(y)rq(x|y)) ≥ 0, (4)

where

rq(x|y) ,
p(x)q(y|x)

q(y)
(5)

is the auxiliary backward channel induced by the auxiliary for-
ward channelq(y|x). A sufficient condition for the inequality
(4) to hold is thatp(y)rq(x|y) is a joint distribution, i.e.,
∫

X

∫

Y
p(y)rq(x|y)dydx = 1 [26, Th. 8.6.1]. This condition

is fulfilled for any combination ofp(y|x) andq(y|x), and can
be verified by usingq(y) =

∫

X
p(x)q(y|x)dx in rq(x|y) of

(5).

B. Lower Bounds using Auxiliary Backward Channel r(x|y)

There are instances such as SDBP, where an auxiliary
backward channelr(x|y) is known while the corresponding
auxiliary forward channelq(y|x) is unknown. In such cases,
if (3) is to be used to compute a lower bound on the MI,
an auxiliary forward channelq(y|x) has to be computed
corresponding to a given auxiliary backward channelr(x|y)
and a givenp(x). There are two challenges with this ap-
proach. Firstly, givenr(x|y) and p(x), no general method
exists to computeq(y|x), and depending on the input and
output alphabets, there may not always exist a corresponding
q(y|x) or there may exist multiple solutions. We show that
given an auxiliary backward channel, an auxiliary forward
channel may not always exist, by providing a counter-example.
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Given r(x|y) and p(x), the problem is now to findq(y|x)
for all y and x. Suppose we have a detector that provides
r(x|y) = r(x) 6= p(x), irrespective ofy. For such a
detector, the auxiliary forward channel induced byr(x|y) is
given by q(y|x) = r(x|y)q(y)/p(x) = r(x)q(y)/p(x). The
condition

∫

q(y|x)dy = 1 then impliesr(x) = p(x), which
is contradictory to the assumptionr(x) 6= p(x). Hence, not
every auxiliary backward channel has an associated auxiliary
forward channel. Secondly, even when there exists aq(y|x)
corresponding to a given auxiliary backward channel andp(x),
it may be computationally intractable to obtain fromr(x|y)
for all y, sincey can take on uncountably many values, while
r(x|y) is only available for specific observed values ofy.
In this section, we provide an alternate approach to lower-
bounding the MI using an auxiliary backward channel, without
the explicit knowledge of a corresponding auxiliary forward
channel.

For any input distributionp(x) and any conditional distri-
butionr(x|y), lower bounds on the MI can be derived as [18,
Eq. (39)]

I(X;Y) ≥ Ir(X;Y) = EX,Y

[

log
r(X|Y)

p(X)

]

, (6)

where, similarly to (3), the averaging is computed with respect
to the joint distributionp(x,y). The lower bound (6) can be
also proved using Kullback–Leibler divergence as

I(X;Y)− Ir(X;Y) = D(p(x,y)||p(y)r(x|y)) ≥ 0 (7)

For the inequality in (7) to hold,p(y)r(x|y) should be a
joint distribution, which is always true as long asr(x|y) is
chosen as a conditional distribution. Note that (3) and (6)
provide the same lower bound, i.e.,Iq(X;Y) = Ir(X;Y),
only if the auxiliary backward channel is given byrq(x|y),
i.e., induced by the auxiliary forward channel according to(5).
However, it should be noted that (6) can be used as a lower
bound on the MI for any arbitrary conditional distribution
r(x|y), which is not necessarily related to anyq(y|x). It
has been shown thatIr(X;Y) is achievable using an optimal
detector, i.e., a maximum a posteriori detector, designed for the
auxiliary backward channelr(x|y) [22], [18, Eq. (42)–(43)].
The decisionŝx are taken aŝx = argmaxx r(x|y).

Remark 1: Either maximizingIq of (3) over all possible
auxiliary forward channelsq(y|x) or maximizing Ir of (6)
over all possible auxiliary backward channelsr(x|y) leads to
the true MI (1).

C. Monte Carlo Estimation of AIR

By combining (2) and (3), and (2) and (6), we have

Imem
q = lim

K,J→∞

1

K
EX,Y

[

log
q(Y|X)

q(Y)

]

, (8)

Imem
r = lim

K,J→∞

1

K
EX,Y

[

log
r(X|Y)

p(X)

]

. (9)

The state-of-the-art method for the estimation of (8) and (9)
is a simulation based on Monte Carlo (MC) averages [6], [27].
The channel is simulatedNmc times, each time by generating
input x with different random seed, sayx(n) for the nth MC

run, to get a corresponding outputy(n) from the fiber-optic
channel for each MC run. The lower bound on the MIs (8)
and (9) can then be estimated as

Îmem
q =

1

Nmc

Nmc
∑

n=1

{

1

K
log

q(y(n)|x(n))

q(y(n))

}

, (10)

Îmem
r =

1

Nmc

Nmc
∑

n=1

{

1

K
log

r(x(n)|y(n))

p(x(n))

}

. (11)

III. C OMPUTATION OF AIR FOR THE FIBER-OPTIC

CHANNEL

The computation of AIRs for the fiber-optic channel using
different auxiliary channels is abstracted in Fig. 1. The input
datax is sent through a pulse shaper followed by the fiber
link to get the output of the fiber-optic channel,y. This
output is fed either to SDBP or DBP, which aim to undo the
impairments induced by the fiber-optic channel. The effect of
pulse shaping is reversed using either the output from DBP
or through one of the two techniques for SDBP to get the
auxiliary channels. In the section, these processes will be
detailed.

A. Computation of AIR using DBP

The traditional approach of computing the AIR is by as-
suming the auxiliary forward channel to be memoryless3. This
assumption is justified by using a post-processing block, such
as a DBP block for nonlinear compensation, after the fiber-
optic channel as part of the auxiliary forward channel. The
output statistics of the fiber-optic channel and the DBP has
been considered memoryless with additive Gaussian noise. As
shown in Fig. 1, letz = [z1, z2, . . . , zK ], with zi ∈ C for
i = 1, 2, . . . ,K, be the signal after DBP, matched filtering
and sampling. According to the data-processing inequality[26,
Ch. 2], the information content of a signal cannot be increased
after post-processing and hence we haveI(X;Z) ≤ I(X;Y),
where

I(X;Z) = EX,Z

[

log
p(Z|X)

p(Z)

]

with p(z) =
∫

x
p(x)p(z|x)dx. Similar to the lower bound (3)

using auxiliary forward channel, we can define

Iq(X;Z) , EX,Z

[

log
q(Z|X)

q(Z)

]

≤ I(X;Z), (12)

with q(z) =
∫

X
p(x)q(z|x)dx. Using DBP as detector,q(z|x)

is commonly assumed to factorize into marginal distributions,
i.e., q(z|x) =

∏K
k=1 q(zk|xk) and q(z) =

∏K
k=1 q(zk). By

using these factorizations in (12) and using an equivalent of
(10) for z as output, we have

Îq(X ;Z) =
1

Nmc

Nmc
∑

n=1

{

1

K

K
∑

k=1

log
q(z

(n)
k |x

(n)
k )

q(z
(n)
k )

}

, (13)

3When the output of the channelyi at discrete timei, given the channel
input xi at time i, is independent of channel inputs and outputs at all other
times, we call the channel as memoryless.
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GMP-SDBP

SBS-SDBP

GMP
r̃k(·|y) Evaluate inΩ,

multiply prior,
normalize

rk(·|y)

MF+samp.+

Gauss. approx.

r̃k(·|y) Evaluate inΩ,
multiply prior,

normalize

rk(·|y)
SDBP

y

y ∈ CJFiber link
s

s ∈ CJ

Pulse shaper
x

x ∈ ΩK

Ω ⊆ C

fiber-optic channel

DBP MF+samp.
z

z ∈ CK

Estimate pars.
for Gauss.

q(zk|xk)

Fig. 1. Auxiliary channels obtained for the fiber-optic channel using two variations of SDBP, and DBP, wherexk ∈ Ω. The distributionr̃k(·|y) is evaluated
at xk ∈ Ω, multiplied with the prior, and normalized to get an auxiliary backward channel,rk(·|y). MF refers to the matched filter.

where, similarly to the approach in [21],q(zk|xk) is assumed4

to be a Gaussian distribution with a different mean and
covariance matrix for each possible value ofxk. In particular,
the real and imaginary components ofzk are taken to be either
independent and identically distributed Gaussian (iidG) [10],
[19], or correlated Gaussian (CG) [21]. Gains in AIR were
seen in the latter case for inline dispersion compensation at
high powers. We will use both these approaches in benchmark-
ing the results. In both these variations, a training phase is
employed to obtain mean and variance corresponding to each
of the constellation points. This training phase is visualized
as the ‘Estimate pars. for Gauss.’ block in Fig. 1, referringto
the estimation of parameters for the Gaussian distribution. The
means are obtained using [21, Eq. (8)], and variances for iidG
and CG are obtained using [21, Eq. (9)] and [21, Eq. (10)],
respectively.

Remark 2: Note that even though AIRs for DBP are com-
puted using an auxiliary forward channel, the same AIRs are
also obtained using an auxiliary backward channel induced by
this auxiliary forward channel, i.e.,r(x|z) = q(z|x)p(x)/q(z).

B. Computation of AIR using SDBP

DBP is not an optimal processing strategy for nonlinear
compensation. Indeed, some residual memory due to signal–
noise interaction is present even after DBP is performed. As
SDBP accounts for this memory, it may lead to improved
bounds on the MI.

The theory behind SDBP is based on factor graphs and
message passing, and is derived and explained in detail in [14],
while improved versions of SDBP are found in [25], [28], [29].
A short summary of SDBP is provided here for completeness.
SDBP compensates not only for linear and nonlinear effects
existing in the fiber but also accounts for the noise from the
amplifiers. The main idea of SDBP is to statistically (i.e., in
the form of a distribution) describe the uncertainty present in
the unobserved signals at each stage of the fiber-optic channel.
These unobserved signals are signals after each of the linear
and nonlinear blocks of the split-step Fourier method (SSFM)
and also the signals after the amplifiers. For the fiber-optic
channel, since closed-form expressions of the distributions are

4When superscripts for indicating MC runn are omitted as inq(zk |xk),
it should be interpreted as applying to any general MC run.

not possible to derive, except for some specific scenarios, we
represent distributions with a list ofNp particles.5 Each of
theseNp particles is a waveform of sizeJ samples, where
J/K ≈ 4, assuming waveforms are represented by4 samples
per symbol. Starting from the received signaly, theseNp

particles are passed through the inverse of each of the blocks
of the fiber-optic channel, all the way to the transmitted signal
s. At each inverse amplification stage, a particle representation
of the injected amplified spontaneous emission (ASE) noise is
also required. This is obtained by drawing a random vector
w comprisingN × JNp independent, identically distributed,
and circularly symmetric complex Gaussian random variables,
collecting the requiredNp particle representations, each of
size J , for each of theN amplifiers. SDBP can thus be
viewed as an algorithm that takes an inputy ∈ CJ and
returnsNp particles, where each of theseNp particles is in
CJ , and describes the knowledge the receiver has regarding
the variables in Fig. 1. The algorithm is stochastic, as its result
depends on the realizationw used to compute the particles.
This dependence, whose impact can be made negligible by
increasingNp, will be omitted in the following. However,
we will shortly come back to it at the end of this section,
showing that it affects only the tightness of the computed
lower bounds and not their validity. To account for the effect
of pulse shaping, two different approaches, SBS-SDBP and
GMP-SDBP, are proposed in [14] and [25], respectively, and
are explained briefly below.

In the first approach, SBS-SDBP, the output after SDBP is
passed through a matched filter, matched to the transmit pulse
shape, followed by sampling6. Corresponding to each symbol
xk, Np particles are approximated with a multivariate Gaussian
distribution, r̃k(·|y). In the second approach, referred to as
GMP-SDBP in this paper, allNp particles from SDBP are first

5A list of particles x
(1), x

(2), . . . ,x(Np), denoted by{x(n)}
Np

n=1,
forms a particle representation of a distributionp(x) when p(x) ≈

1/Np

∑Np

n=1 δ(x−x
(n)) [29]. We have taken uniform sampling of these par-

ticles to form a distribution. There exist other approachessuch as nonuniform
quantization [8] to estimate the PDFs.

6There is residual memory left after SBS-SDBP [28] as matchedfilter
followed by sampling is a linear technique and may not be the optimal
processing for the nonlinear fiber-optic channel [32], [33]. This residual
memory was accounted for by using the Viterbi algorithm on the samples
obtained after a matched filter, and was shown to have improved performance
compared to SBS-SDBP [29].
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approximated with a multivariate Gaussian distribution and
then Gaussian message passing (GMP) is applied according
to [34, Table III] instead of a matched filter, and̃rk(·|y)
is obtained. In SBS-SDBP and GMP-SDBP, the distribution
r̃k(·|y) is evaluated atxk ∈ Ω, multiplied with the prior, and
normalized to get an auxiliary backward channel as shown
in Fig. 1. By assuming that the input distributionp(x) is the
product of its marginals, i.e.,pX(x) =

∏K
k=1 pX(xk) and by

assuming that the auxiliary backward channel is factorizedas

r(x|y) ,

K
∏

k=1

rk(xk|y), (14)

(11) becomes

Îmem
r =

1

Nmc

Nmc
∑

n=1

{

1

K

K
∑

k=1

log
rk(x

(n)
k |y(n))

pX(x
(n)
k )

}

, (15)

whererk(x
(n)
k |y(n)) is obtained by either SBS-SDBP or GMP-

SDBP.
Effect of Number of Particles in SDBP: In order to make

explicit the dependence of the auxiliary backward channel
estimated by SDBP onw, we indicate the auxiliary backward
channel asr(·|y,w). Indeed, for a large enough number of
particlesNp, we can assume that the particle representation
of the ASE noise becomes very accurate and almost inde-
pendent ofw. In this case, the auxiliary backward channel
can be written asr(·|y,w) ≈ r(·|y) and directly used in (6)
and (11). However, we might be interested in the practical
case in whichNp cannot be made large at will (e.g., due
to complexity constraints), such that the auxiliary backward
channel is affected by relevant statistical fluctuations and its
dependence onw cannot be neglected. This case requires
some extra care, as the lower bound (8) assumes that the
auxiliary backward channel is fixed (though arbitrary). On
the other hand, given the same output samplesy, the SDBP
algorithm may provide different auxiliary backward channels,
depending on the internally generated random vectorw. That
is to say, when considering the MC average in the estimators
(11) or (15), the detector is optimized for a different auxiliary
backward channel at each MC run. Therefore, we generalize
the lower bound (6) as

I(X;Y) ≥ Ir(X;Y|W) , Ew[Irw(X;Y))] (16)

whereIrw(X;Y) , Ir(X;Y|W = w) is the auxiliary back-
ward channel lower bound (6) obtained for a fixed realization
w, while the quantityIr(X;Y|W) can be interpreted as the
average AIR when the mismatched detector is randomly se-
lected (with some probabilityp(w)) from a family of detectors
r(·|y,w). The inequality in (16) follows from the fact that

Irw (X;Y) ≤ I(X;Y) (17)

for anyw and holds regardless of the number of particlesNp.
The average AIR in (16) can be eventually estimated as

Îmem
r =

1

Nmc

Nmc
∑

n=1

{

1

K
log

r(x(n)|y(n),w(n))

p(x(n))

}

. (18)

In conclusion, the number of particlesNp does not affect

Single-mode fiber EDFA fiber Bragg grating EDFA

×N

Fig. 2. A fiber link with N spans where each span consists of an single
mode fiber, fiber Bragg grating, and erbium-doped fiber amplifers
(EDFA).

the validity of the bound (16) and can be selected to obtain
the desired trade-off between tightness and complexity. For a
small value ofNp, the statistical fluctuations of the auxiliary
backward channel (from one MC run to the other) and its
actual mismatch can be quite significant, but are anyway part
of the adopted detection strategy. They are incorporated inthe
average AIR defined in (16) and are averaged out by the MC
estimation (18). As in (15), the computation of (18) can be
simplified by factorizing both the auxiliary backward channel
and the input distribution.

IV. N UMERICAL RESULTS AND DISCUSSION

A. System Parameters

The fiber-optic channel used in this paper is a single-
channel system comprising a single-polarization transmitter
and a fiber link consisting ofN spans. Each span of the
fiber link consists of a transmission fiber of lengthL, which
is a standard single-mode fiber simulated using SSFM, and
a fiber Bragg grating for optical dispersion management. In
between fiber spans, there are erbium-doped fiber amplifiers
that compensate for the losses in the preceding span. The
transmitter uses a root raised cosine pulse shaper with a roll-
off factor of 0.25 and truncation length of 16 symbol periods.
The modulation format is 64-QAM and the symbol rateRs

is either14 GBd, 28 GBd, or 56 GBd. The parameters used
for the standard single-mode fiber are a dispersion coefficient
of D = 16 ps/(nm km), a Kerr nonlinearity parameter of
γ = 1.3 (W km)−1, and an attenuation ofα = 0.2 dB/km,
which are according to the ITU-T G.652 standard. Propagation
in the fiber is simulated using the SSFM with a segment length
[35] of ∆ = (ǫLNL

2
D)

1/3, whereǫ = 10−4, LN = 1/(γP ) is
the nonlinear length,LD = 2πc/(R2

s |D|λ2) is the dispersion
length, λ is the wavelength,c is the speed of light, and
P is the average input power to each fiber span. We used
the same segment lengths for simulating the channel and
for both DBP and SDBP. A fiber Bragg grating with an
insertion loss of3 dB and perfect dispersion compensation for
the preceding standard single-mode fiber is used. The noise
figure is Fn = 5.5 dB for each of the amplifiers. The total
noise power spectral density due to amplified spontaneous
emission isNase= ((G1−1)nsphν+(G2−1)nsphν)N , where
G1(resp.G2) is the gain in the amplifier after standard single-
mode fiber (resp. fiber Bragg grating),nsp is the spontaneous-
emission factor and is approximatelyFn/2 when gains of the
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Fig. 3. AIR using DBP-iidG [10], [19], DBP-CG [21], SBS-SDBP[14], and
GMP-SDBP [25] for 14 GBd, 64-QAM, fiber Bragg grating link,N = 30,
L = 120 km. FOC refers to fiber-optic channel.
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Fig. 4. Maximum AIR (obtained at optimum power) for diferentnumber of
spans for 14 GBd, 64-QAM, andL = 100 km.

amplifiers are large,h is Planck’s constant, andν is the optical
frequency. Ideal band-pass filters with an equivalent low-pass
bandwidth equal to the symbol rate are used in the erbium-
doped fiber amplifiers and at the input of the receiver. The
number of particles used in the SDBP approach isNp = 500
for both SBS-SDBP and GMP-SDBP, but we verified that
even withNp = 1500, similar performance was obtained. For
simulations, the input distribution is assumed to be uniform,
i.e., pX(xk) = 1/|Ω| for xk ∈ Ω.

B. Results

Fig. 3 shows the lower bounds on the MI, AIR, as a function
of input power, obtained through different auxiliary channels
for 14 GBd over a 64-QAM link. For reference, the capacity
of the additive white Gaussian noise (AWGN) channel and the
constrained capacity of an equivalent AWGN channel with 64-
ary quadrature amplitude modulation (QAM) are also shown.
We notice a trend for the DBP approaches (diamond and
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Fig. 5. The gains in AIR of GMP-SDBP (resp. SBS-SDBP) over DBP-CG
are shown using solid (resp. dashed) lines for 64-QAM,L = 100 km for 28
GBd (diamonds) and 56 GBd (circles).

square markers) to have lower AIRs than the SDBP approaches
(plus and circle markers), and also that the AIRs behave
differently for DBP and SDBP. Specifically, we can observe
that the behavior of the link is almost linear up to about−4
dBm, beyond which the four AIR curves start to seperate. At
higher powers, nonlinearity comes into play and the curves
separate. SDBP reaches a maximum at around4 dBm, while
DBP reachers a lower maximum at about1 dBm. The AIR
for DBP decreases faster than that of SDBP, which means
that SDBP performs better in the nonlinear regime. This is an
expected behavior because SDBP accounts for the nonlinear
signal–noise interactions, which DBP does not account for.If
we compare AIRs between DBP techniques, DBP-CG (square
markers) has better AIR than DBP-iidG (diamond markers), as
the former accounts for the correlation between the in-phase
and quadrature components. This is expected, and is in line
with the conclusions of [21], as DBP-CG has better AIR than
DBP-iidG. Also, we can observe that GMP-SDBP has better
AIR than SBS-SDBP, as GMP-SDBP is a more principled
way of computing a specific message, whereas SBS-SDBP is
a heuristic approach.

AIRs similar to Fig. 3 were computed by varying the
number of spansN for 14 GBd, 64-QAM, andL = 100
km. The maximum AIR for DBP-iidG, DBP-CG, SBS-SDBP,
and GMP-SDBP is obtained at optimum power and plotted in
Fig. 4. It can be seen that asN is increased, the AIR decreases.
The highest AIR, which is the maximum that one can achieve
for 64-QAM, is achieved at a low number of spans, which
is N = 20 for the chosen parameters. We can also observe
that atN = 50, the gain in AIR with GMP-SDBP over DBP-
iidG (resp. DBP-CG) is 0.9 bits/symbol (resp. 0.7 bits/symbol)
and the gain with SBS-SDBP is 0.5 bits/symbol (resp. 0.3
bits/symbol).

AIRs similar to Fig. 4 were computed for 28 GBd (diamond
markers) and 56 GBd (circle markers) for differentN , and
the maximum AIR is computed for these approaches. The
difference between the maximum AIR for SBS-SDBP or
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GMP-SDBP and the maximum AIR for DBP-CG (which is
used as a benchmark technique) is shown in Fig. 5. All the
curves have a maximum at some intermediate point as the
gain between SDBP and DBP will be zero at smallN (both
AIRs saturate to the maximum value), and at largeN , both
AIRs vanish. We observe that the gains in AIR of SDBP over
DBP decrease as the symbol rate is increased. This behavior
was observed also in our previous research [14], [29]. The
SDBP accounts for signal–noise interactions, which decrease
as we increase the symbol rate. Therefore, the performance of
SDBP approaches DBP with increasing symbol rate. As the
symbol rate increases, accounting for longer correlationsin
the memory becomes even more important. However, due to
complexity constraints, we have not taken longer memory into
account. With the recent interest in symbol-rate optimization
[30], [31], low symbol rates are getting more attention, and
therefore, gains obtained at 14 GBd for single-carrier trans-
mission may still be relevant.

C. Discussion

The computation of lower bounds on the MI using either an
auxiliary forward channel or an auxiliary backward channelare
two different ways with their own advantages and disadvan-
tages. If an auxiliary forward channel is available, thenq(y)
has to be calculated first, which may involve some integrals,
and (3) is used to lower-bound the MI. Lower bounds on the
MI can be obtained using an auxiliary backward channel by
using any conditional distributionr(x|y), i.e., by removing
the constraint thatrq(x|y) in (4) is induced by an auxiliary
forward channel. That is, if an auxiliary backward channel
is available, then (6) can be used to lower-bound the MI
without explicitly finding an auxiliary forward channel. The
true MI can in theory be obtained either by maximizing
over all possible auxiliary forward channels in (3), or by
maximizing over all possible auxiliary backward channels in
(6). In this paper, we obtained auxiliary backward channels
from the SDBP algorithm and the results indicate that lower
bounds on the MI computed using GMP-SDBP were the best
in comparison to DBP-iidG, DBP-CG, and SBS-SDBP.

We will discuss the extension of the results for dual polar-
ization and comment on the complexity. Firstly, computation
of AIRs through the auxiliary backward channel using (15)
is applicable for dual polarization also. SBS-SDBP has been
developed for dual polarization [14] and GMP-SDBP can
be extended to dual polarization. A single polarization was
used for computing AIRs with GMP-SDBP in this paper
for computational simplicity. We note that the polarization
mode dispersion for a dual-polarization transmitter degrades
the performance of both DBP and SDBP, as observed in [14],
and hence the AIRs of Fig. 3 will be lowered. However, we
conjecture that the relative gains of SDBP compared to DBP
would be similar to what we have shown in Fig. 3 for a single
polarization. Secondly, the number of segments per span used
in the simulation of the fiber using SSFM is the same as
the ones used for DBP and SDBP. There exist many low-
complexity variations of DBP, where the number of segments
is optimized for real-time implementation. Low-complexity

variations of SDBP can be derived, e.g., by optimizing number
of particles or segments per span [14].

Improved lower bounds may possibly be obtained than
those reported in the paper. Here we present two different
methods. Firstly, in the GMP-SDBP, we used a linear Gaussian
message passing algorithm to account for the effect of the
pulse shaper, which may not be an optimal strategy for the
fiber-optic channel. We conjecture that when the distribution
is represented in a particle form, techniques other than linear
Gaussian message passing might yield even better bounds than
those presented in the paper. Secondly, improved bounds on
the MI can be obtained by extending the principle used from
auxiliary forward channel to auxiliary backward channel to
a more general technique. The required property to lower-
bound the MI using an auxiliary forward channel and also
an auxiliary backward channel isD ≥ 0 in (4) and (7).
This principle can be extended by allowingp(y) in (4) to
be an arbitrary probability density function overy that is not
necessarily induced byp(y|x) or q(y|x) [18].

The methodology introduced in the paper for deriving the
SDBP detector and computing the AIR applies to any fiber-
optic system for which an SSFM-like channel description
exists. Such systems may include, e.g., wavelength division
multiplexing, spatial division multiplexing, arbitrary disper-
sion maps, arbitrary amplification schemes, and arbitrary mod-
ulation formats. For example, higher AIRs can be achieved
with optimized signal constellations than with regular QAM
[11]. Such system changes would affect all AIR bounds in a
similar manner.

Remark 3: An upper bound for the mutual information is
presented asI(X;Y) ≤ L log(1 + SNR) bit/block [37, eq.
(27)] where SNR is the signal-to-noise ratio. With the nota-
tion of this paper,I(X;Y) ≤ (J/K) log(1 + (P/Rs)/Nase)
bit/symbol. Unfortunately, this upper bound scales with the
oversampling factorJ/K, whereas the lower bounds do not
scale correspondingly. Already with the selected value of
J/K = 4, the upper bound is much larger than the computed
AIRs and falls outside the ranges plotted in Figs. 3–5.

V. CONCLUSION

Traditionally, lower bounds on the MI were computed using
an auxiliary forward channel. In this paper, we computed
lower bounds using an auxiliary backward channel for the first
time for the fiber-optic channel. These bounds are achievable
by a maximum a posteriori detector based on the auxil-
iary backward channel. Two different distributions obtained
through the SDBP algorithm are used as auxiliary backward
channels for estimation of AIRs. Both these distributions have
better AIR in comparison to the state-of-the-art method of
using DBP. Through simulations, it was also found that up
to 0.7 bit/symbol higher AIR is obtained using GMP-SDBP
compared to DBP. This means that in comparison to the DBP
approach, improved lower bounds on the MI can be obtained
using the SDBP approach.
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