776 research outputs found

    Bounds on the Capacity of ASK Molecular Communication Channels with ISI

    Get PDF
    There are now several works on the use of the additive inverse Gaussian noise (AIGN) model for the random transit time in molecular communication~(MC) channels. The randomness invariably causes inter-symbol interference (ISI) in MC, an issue largely ignored or simplified. In this paper we derive an upper bound and two lower bounds for MC based on amplitude shift keying (ASK) in presence of ISI. The Blahut-Arimoto algorithm~(BAA) is modified to find the input distribution of transmitted symbols to maximize the lower bounds. Our results show that over wide parameter values the bounds are close.Comment: 7 pages, 4 figures, Accepted in IEEE GLOBECOM 201

    Information Rates of ASK-Based Molecular Communication in Fluid Media

    Get PDF
    This paper studies the capacity of molecular communications in fluid media, where the information is encoded in the number of transmitted molecules in a time-slot (amplitude shift keying). The propagation of molecules is governed by random Brownian motion and the communication is in general subject to inter-symbol interference (ISI). We first consider the case where ISI is negligible and analyze the capacity and the capacity per unit cost of the resulting discrete memoryless molecular channel and the effect of possible practical constraints, such as limitations on peak and/or average number of transmitted molecules per transmission. In the case with a constrained peak molecular emission, we show that as the time-slot duration increases, the input distribution achieving the capacity per channel use transitions from binary inputs to a discrete uniform distribution. In this paper, we also analyze the impact of ISI. Crucially, we account for the correlation that ISI induces between channel output symbols. We derive an upper bound and two lower bounds on the capacity in this setting. Using the input distribution obtained by an extended Blahut-Arimoto algorithm, we maximize the lower bounds. Our results show that, over a wide range of parameter values, the bounds are close.Comment: 31 pages, 8 figures, Accepted for publication on IEEE Transactions on Molecular, Biological, and Multi-Scale Communication

    Capacity of Molecular Channels with Imperfect Particle-Intensity Modulation and Detection

    Full text link
    This work introduces the particle-intensity channel (PIC) as a model for molecular communication systems and characterizes the properties of the optimal input distribution and the capacity limits for this system. In the PIC, the transmitter encodes information, in symbols of a given duration, based on the number of particles released, and the receiver detects and decodes the message based on the number of particles detected during the symbol interval. In this channel, the transmitter may be unable to control precisely the number of particles released, and the receiver may not detect all the particles that arrive. We demonstrate that the optimal input distribution for this channel always has mass points at zero and the maximum number of particles that can be released. We then consider diffusive particle transport, derive the capacity expression when the input distribution is binary, and show conditions under which the binary input is capacity-achieving. In particular, we demonstrate that when the transmitter cannot generate particles at a high rate, the optimal input distribution is binary.Comment: Accepted at IEEE International Symposium on Information Theory (ISIT

    Adaptive Molecule Transmission Rate for Diffusion Based Molecular Communication

    Full text link
    In this paper, a simple memory limited transmitter for molecular communication is proposed, in which information is encoded in the diffusion rate of the molecules. Taking advantage of memory, the proposed transmitter reduces the ISI problem by properly adjusting its diffusion rate. The error probability of the proposed scheme is derived and the result is compared with the lower bound on error probability of the optimum transmitter. It is shown that the performance of introduced transmitter is near optimal (under certain simplifications). Simplicity is the key feature of the presented communication system: the transmitter follows a simple rule, the receiver is a simple threshold decoder and only one type of molecule is used to convey the information

    A Survey on Modulation Techniques in Molecular Communication via Diffusion

    Get PDF
    This survey paper focuses on modulation aspects of molecular communication, an emerging field focused on building biologically-inspired systems that embed data within chemical signals. The primary challenges in designing these systems are how to encode and modulate information onto chemical signals, and how to design a receiver that can detect and decode the information from the corrupted chemical signal observed at the destination. In this paper, we focus on modulation design for molecular communication via diffusion systems. In these systems, chemical signals are transported using diffusion, possibly assisted by flow, from the transmitter to the receiver. This tutorial presents recent advancements in modulation and demodulation schemes for molecular communication via diffusion. We compare five different modulation types: concentration-based, type-based, timing-based, spatial, and higher-order modulation techniques. The end-to-end system designs for each modulation scheme are presented. In addition, the key metrics used in the literature to evaluate the performance of these techniques are also presented. Finally, we provide a numerical bit error rate comparison of prominent modulation techniques using analytical models. We close the tutorial with a discussion of key open issues and future research directions for design of molecular communication via diffusion systems.Comment: Preprint of the accepted manuscript for publication in IEEE Surveys and Tutorial

    Capacities and Optimal Input Distributions for Particle-Intensity Channels

    Full text link
    This work introduces the particle-intensity channel (PIC) as a model for molecular communication systems and characterizes the capacity limits as well as properties of the optimal (capacity-achieving) input distributions for such channels. In the PIC, the transmitter encodes information, in symbols of a given duration, based on the probability of particle release, and the receiver detects and decodes the message based on the number of particles detected during the symbol interval. In this channel, the transmitter may be unable to control precisely the probability of particle release, and the receiver may not detect all the particles that arrive. We model this channel using a generalization of the binomial channel and show that the capacity-achieving input distribution for this channel always has mass points at probabilities of particle release of zero and one. To find the capacity-achieving input distributions, we develop an efficient algorithm we call dynamic assignment Blahut-Arimoto (DAB). For diffusive particle transport, we also derive the conditions under which the input with two mass points is capacity-achieving.Comment: arXiv admin note: text overlap with arXiv:1705.0804

    The Bit Error Performance and Information Transfer Rate of SPAD Array Optical Receivers

    Get PDF
    In this paper the photon counting characteristics, the information rate and the bit error performance of single-photon avalanche diode (SPAD) arrays are investigated. It is shown that for sufficiently large arrays, the photocount distribution is well approximated by a Gaussian distribution with dead-time-dependent mean and variance. Because of dead time, the SPAD array channel is subject to counting losses, part of which are due to inter-slot interference (ISI) distortions. Consequently, this channel has memory. The information rate of this channel is assessed. Two auxiliary discrete memoryless channels (DMCs) are proposed which provide upper and lower bounds on the SPAD array information rate. It is shown that in sufficiently large arrays, ISI is negligible and the bounds are tight. Under such conditions, the SPAD array channel is precisely modelled as a memoryless channel. A discrete-time Gaussian channel with input-dependent mean and variance is adopted and the properties of the capacity-achieving input distributions are studied. Using a numerical algorithm, the information rate and the capacity-achieving input distributions, subject to peak and average power constraints are obtained. Furthermore, the bit error performance of a SPAD-based system with on-off keying (OOK) is evaluated for various array sizes, dead times and background count levels

    Identification Capacity of the Discrete-Time Poisson Channel

    Full text link
    Numerous applications in the field of molecular communications (MC) such as healthcare systems are often event-driven. The conventional Shannon capacity may not be the appropriate metric for assessing performance in such cases. We propose the identification (ID) capacity as an alternative metric. Particularly, we consider randomized identification (RI) over the discrete-time Poisson channel (DTPC), which is typically used as a model for MC systems that utilize molecule-counting receivers. In the ID paradigm, the receiver's focus is not on decoding the message sent. However, he wants to determine whether a message of particular significance to him has been sent or not. In contrast to Shannon transmission codes, the size of ID codes for a Discrete Memoryless Channel (DMC) grows doubly exponentially fast with the blocklength, if randomized encoding is used. In this paper, we derive the capacity formula for RI over the DTPC subject to some peak and average power constraints. Furthermore, we analyze the case of state-dependent DTPC
    • …
    corecore