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The Bit Error Performance and Information

Transfer Rate of SPAD Array Optical Receivers

Elham Sarbazi,Student Member, IEEE,Majid Safari,Member, IEEE,

and Harald Haas,Fellow Member, IEEE

Abstract

In this paper the photon counting characteristics, the information rate and the bit error performance

of single-photon avalanche diode (SPAD) arrays are investigated. It is shown that for sufficiently large

arrays, the photocount distribution is well approximated by a Gaussian distribution with dead-time-

dependent mean and variance. Because of dead time, the SPAD array channel is subject to counting

losses, part of which are due to inter-slot interference (ISI) distortions. Consequently, this channel has

memory. The information rate of this channel is assessed. Two auxiliary discrete memoryless channels

(DMCs) are proposed which provide upper and lower bounds on the SPAD array information rate. It is

shown that in sufficiently large arrays, ISI is negligible and the bounds are tight. Under such conditions,

the SPAD array channel is precisely modelled as a memoryless channel. A discrete-time Gaussian

channel with input-dependent mean and variance is adopted and the properties of the capacity-achieving

input distributions are studied. Using a numerical algorithm, the information rate and the capacity-

achieving input distributions, subject to peak and average power constraints are obtained. Furthermore,

the bit error performance of a SPAD-based system with on-off keying (OOK) is evaluated for various

array sizes, dead times and background count levels.

Index Terms

Single-photon avalanche diode (SPAD), SPAD array, photon counting, dead time, capacity, optical

wireless communications.
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2

I . INTRODUCTION

Single photon avalanche diodes (SPADs) are semiconductor devices with extremely high

sensitivity, high power efficiency, high detection efficiency, and high timing resolution. They

operate in avalanche breakdown mode, also known as theGeiger mode. In this mode, the SPAD is

biased above its breakdown voltage such that individual photons trigger an avalanche breakdown,

leading to a large internal gain and a measurable output current spike [1]. After each breakdown,

a quenching circuitresets the SPAD by reducing the bias voltage below the breakdown threshold,

stopping the avalanche and raising the bias voltage again. During the quenching process, the

SPAD is unresponsive to incident photons for a circuit specificdead time. It is only after this

dead time period that the SPAD is able to detect another photon. Active quenching (AQ) and

passive quenching (PQ) are the two main types of quenching circuits. In AQ SPADs, the dead

time is constant, while in PQ SPADs the dead time is extended by each incident photon. Thus,

AQ SPADs generally have higher count rates than PQ SPADs [2], [3].

In recent years, SPADs have drawn particular attention in the field of optical wireless com-

munication (OWC). Their unique features has opened the door to many OWC applications,

dealing with very low intensity levels down to a single photon, where conventional positive-

intrinsic-negative (PIN) diodes and avalanche photodiodes (APDs) can not provide sufficient

sensitivity and power efficiency. Providing a very large internal gain and easily overcoming the

thermal noise, SPADs are able to detect individual photons without the need for high-gain low-

noise transimpedance amplifiers (TIAs). As a result of this, longer communication links can be

supported with a SPAD receiver. However, the SPAD photon counting performance is degraded

by its unavoidable dead time. In any SPAD-based OWC system, the counting losses arising from

dead time not only result in higher error probabilities, but also limit the count rate, and hence the

maximum achievable data rate. Efforts are still underway to improve the performance of these

photodetectors by shortening the dead time period as much as possible. Meanwhile, several

experimental studies suggest that the impact of dead time can be mitigated by employing arrays

of SPADs [4]–[7].

Previous Works

Most of the related research articles are experimental studies [4]–[12] and the theoretical studies

on the subject are limited. While the existing experimental results appreciate the presence and

impact of dead time on the overall performance of the systems, there is a lack of an in-depth

analysis and understanding of how exactly the dead time distorts the data reception and why
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3

systems consisting of SPAD arrays are more robust to the dead time. In the analyses conducted

in [13]–[25], the SPAD dead time has not been taken into consideration and an ideal Poisson

process is assumed for the SPAD photon counting process. Authors in [26]–[29], have assumed

a Poisson distribution with a dead-time-modified mean for the SPAD photon counting process.

In [30], [31], a practical photon counting receiver in optical scattering communication (OSC)

with finite sampling rate, paralyzable dead time, and electrical noise is considered. It is shown

that the dead time leads to a sub-Poisson distribution for the number of recorded pulses. An

approximate expression is derived for the photocount distribution which is only applicable for

extremely low photon rates.

In [32] and [33], we presented a thorough characterization of single SPADs, where we derived

the exact photocount distribution of both AQ and PQ single SPADs under the limits of a short

dead time. We investigated the effect of a long dead time on the photocount statistics of AQ

single SPADs in [34]. We also studied the information transfer rate of AQ single SPADs with

binary signalling in [35] where the SPAD was modelled as a discrete memoryless channel (DMC).

In [36], we provided an initial statistical modelling and error performance evaluation of SPAD

arrays with relatively short dead times.

Our Contribution

In this paper, we focus on SPAD arrays, as they can tolerate longer dead times and offer higher

count rates, hence, higher data rates. We extend our earlier work of [36] and characterize an AQ

SPAD array for OWC applications. We derive the photocount distribution of SPAD arrays and

employ Monte Carlo methods to verify the validity of the analytical models. In particular, we

consider inter-slot interference (ISI) distortions introduced by the SPAD dead time. We assess

the impact of dead time on the information transfer rate of SPAD array. We also evaluate the bit

error ratio (BER) of an OWC system under the limits of dead time and examine the ISI effects.

The remainder of this paper is organized as follows. In Section II, the photocount statistics

of single SPADs and SPAD arrays are discussed. In Section III, the communication channel

model of the SPAD array is presented. In Section IV, the information rate of SPAD arrays is

investigated. In Section V the bit error performance of a SPAD-based OWC system is evaluated.

Finally, concluding remarks are provided in Section VI.
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4

I I. PHOTOCOUNT STATISTICS

A. Single SPAD

Assume that the photons arrive on the surface of the SPAD detector according to a Poisson

arrival process. After each photon detection, the SPAD becomes unresponsive for the duration

of its dead time and can not detect any other photons. This leads to somecounting losses. In the

photon counting context, thephotocountrefers to the number of successfully detected photons

in the so-calledcounting interval. The number of counting losses is random and depends on the

relative dead time, i.e., the dead time to the counting interval ratio.

If the SPAD is free at the beginning of the counting interval, the first incident photon is

indeed detected. However, in many cases of practical interest, the SPAD may be blocked for

some time after the counting interval has started. In such cases, the first few incident photons

may be missed as well, leading to higher counting losses. Depending on the presence or absence

of dead time, the photocount statistics of a single SPAD can be summarized as follows:

A.1. Without Dead Time

Consider a counting interval of lengthT and a constant average photon rateλ (in photons/s).

Let the random variableK denote the photocounts in the counting interval andk be an arbitrary

realization ofK. For an ideal single SPAD without dead time, the photocounts follow a Poisson

distribution [37]:

p0(k) =
(λT )k

k!
e−λT . (1)

The mean and variance of the photocounts are given by [37]:

µ0 = λT, (2a)

σ2
0 = λT. (2b)

A.2. With Dead Time: Free at the Beginning of the Counting Interval

Assume that the SPAD is ready to operate at the beginning of the counting interval, such that

the first incident photon is certainly detected. With a dead time of durationτ , the maximum

number of photocounts is [32], [33], [38]:

kmax = ⌊T/τ⌋+ 1, (3)
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5

where⌊x⌋ denotes the largest integer smaller thanx. In this case, the photocounts are no longer

Poisson distributed and the probability mass function (PMF) of the photocounts is given by [32],

[33], [38]:

pK(k) =



























k
∑

i=0

ψ(i, λk)−
k−1
∑

i=0

ψ(i, λk−1), k < kmax

1−
k−1
∑

i=0

ψ(i, λk−1), k = kmax

0, k > kmax

(4)

where the functionψ(i, u) is defined asψ(i, u) = uie−u/i! andλk = λ(T − kτ). The mean and

variance of the above PMF are expressed as [32], [33]:

µK = kmax −
kmax−1
∑

k=0

k
∑

i=0

ψ(i, λk), (5a)

σ2
K =

kmax−1
∑

k=0

k
∑

i=0

(2kmax − 2k − 1)ψ(i, λk)−
(

kmax−1
∑

k=0

k
∑

i=0

ψ(i, λk)

)2

. (5b)

If τ ≪ T , the expressions in (5a) and (5b) can be approximated as [33]:

µK ≈
λT

1 + λτ
, (6a)

σ2
K ≈

λT

(1 + λτ)3
. (6b)

A.3. With Dead Time: Blocked at the Beginning of the Counting Interval

Assume that the SPAD is blocked forρ seconds at the beginning of the counting interval. In

this case, the probability of detectingk photons is given by:

pK(k) =



























k
∑

i=0

ψ(i, λ′k)−
k−1
∑

i=0

ψ(i, λ′k−1), k < k′max

1−
k−1
∑

i=0

ψ(i, λ′k−1), k = k′max

0, k > k′max

(7)

wherek′max = ⌊(T − ρ)/τ⌋+ 1 andλ′k = λ(T − ρ− kτ). The mean and variance are expressed

as:

µK = k′max −
k′max−1
∑

k=0

k
∑

i=0

ψ(i, λ′k), (8a)
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6

σ2
K =

k′max−1
∑

k=0

k
∑

i=0

(2k′max − 2k − 1)ψ(i, λ′k)−





k′max−1
∑

k=0

k
∑

i=0

ψ(i, λ′k)





2

. (8b)

B. SPAD Array

SPAD arrays are more robust to the dead time counting losses and can achieve higher count

rates. The output of a SPAD array is the sum of all photocounts from individual SPADs during

the same time interval. Other than the dead time, the fill factor (FF) of the array also affects

the photocount distribution. The FF is defined as the ratio of the SPAD active area to the total

array area and is denoted by a coefficientCFF. Throughout this paper, without loss of generality,

we assume thatCFF = 1, i.e., the entire surface of the SPAD is sensitive and therefore, the

probability that incident photons hit the active area is equal to one.

Consider a SPAD array consisting ofNarray elements, and assume independent counting

statistics for the single SPADs in the array (due to negligible crosstalk1). Denoting byKi the

photocount at theith SPAD, the array output is expressed as:

Y =

Narray
∑

i=1

Ki. (9)

If Narray is sufficiently large, according to the central limit theorem (CLT) the photocount

distribution of the SPAD array can be approximated by a Gaussian distribution2, that is:

pY (y) ∼ N (µY , σ
2
Y ), (10)

where,

µY =

Narray
∑

i=1

µKi
, σ2

Y =

Narray
∑

i=1

σ2
Ki
. (11)

Here,µKi
andσ2

Ki
are the mean and variance of the photocount distribution of theith SPAD in

the array, respectively.

The approximate counting distribution given in (10) is compared with the Monte Carlo

simulation results in Fig. 1 for a free SPAD array. It is assumed that all the array elements

are identical. As shown, the Monte Carlo simulation results and the Gaussian approximations

1Crosstalk is a phenomenon that takes place in SPAD arrays, when the avalanche in one SPAD triggers an undesired secondary

avalanche in a neighbouring SPAD.
2Our extensive simulations show that forNarray > 10 this statement is valid.
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(a) Narray = 64
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(b) Narray = 1024

Fig. 1. Probability distribution of photocounts for a free SPAD array withλT = 300 photons,CFF = 1.

are perfectly matched and this confirms the validity of the approximation. In Fig. 1a, an array

of 64 SPADs and in Fig. 1b, a larger array with1024 SPADs are considered. Let the dead time

ratio (i.e., the normalized dead time) be defined as:

δ =
τ

T
. (12)

It is observed that forδ = 0.01 the arrays have similar histograms, meaning that the effect of

dead time is eliminated in both arrays. However, forδ = 0.1 the array with1024 SPADs has

a higher mean value, i.e., the counting losses arising from the longer dead time are effectively

mitigated. Therefore, larger arrays are more robust to dead time losses.

III. COMMUNICATION CHANNEL MODEL OF THE SPAD ARRAY

Some applications may require the SPAD receiver to operate in consecutive counting intervals.

Of particular interest are SPAD-based OWC systems. In these systems, the SPAD dead time has

two effects on the photon counting process. The primary effect is to cause some counting losses

in each time slot (e.g., symbol time). The secondary effect is incurring counting losses in the

neighbouring intervals, where the dead time of last detected photon in one interval may overlap

with the next interval(s), leading to a temporal blockage of the SPAD at the beginning of the

time intervals, thereby causing extra counting losses and distorting the output (the photocounts).

We refer to this as ISI distortions.

Consider the SPAD array as a communication channel and assume a discrete-time signalling

scheme: the channel input is the intensity of the optical signal which can vary between discrete
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8

time slots of lengthT while remaining constant within each time interval. The channel output is

the SPAD array photocount in each time interval, corrupted by background counts of a constant

intensityλb photons/s. Thus,Kb = λbT is the average background counts per counting interval.

Here, we refer to all the noisy counts (arising from dark counts, afterpulsing, and ambient light)

as the background counts. Let the random variablesXn and Yn denote the channel input and

output in thenth time interval, respectively. Further,xn andyn are arbitrary realizations ofXn

andYn, respectively. We also use the notationri , [r1, r2, . . . , ri] to refer to sequences wherer

can be replaced byX, x, Y andy.

In the presence of dead time and due to the ISI effect, the SPAD array channel hasmemory.

Unlike classical memory channels in whichyn depends on previous inputs (xn−1) and/or previous

outputs (yn−1), in the SPAD channelyn depends on thetime of last photon detection events of

individual SPADs in the previous interval. Define:

ρn = [ρ1n, ρ
2
n, . . . , ρ

Narray

n ], (13)

with ρmn denoting the ISI blockage of themth array element in thenth time interval given by:

ρmn =

{

tmn−1 − (n− 1)T + τ, tmn−1 > (n− 1)T − τ
0, otherwise

(14)

where tmn−1 is the time of last photon count of themth array element in the(n − 1)th time

interval. Therefore, according to Section II-B, the following conditional probability describes

the communication channel model of a SPAD array:

Pr{yn|xn,ρn} =
1

√

2πσ2
Yn|Xn,ρn

exp

[

−(yn − µYn|Xn,ρn
)2

2σ2
Yn|Xn,ρn

]

, xn ∈ R
+ and yn ∈ Z

+ (15)

In (8a) and (8b), the mathematical expressions ofµK andσ2
K are functions ofλ andρ. We can

define two multivariable functionsA(λ, ρ) = µK andB(λ, ρ) = σ2
K . Then:

µYn|Xn,ρn
=

Narray
∑

m=1

A

(

xn + λb
Narray

,ρmn

)

, (16a)

σ2
Yn|Xn,ρn

=

Narray
∑

m=1

B

(

xn + λb
Narray

,ρmn

)

. (16b)

Based on (15), (16a) and (16b), the SPAD array channel is clearly adiscrete-time Gaussian

channelwith signal-dependent mean and variance. This channel, however, is not memoryless.
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A finite-state channel (FSC) model3 can be used to characterize this channel. LetSn denote the

state at timen with the state spaceS = {1, 2, . . . , NS}. The state spaceS corresponds toNS

discrete memoryless channels, with common input and output alphabet sets. Assume that the

channel inputs are independent of its states. Define the following conditional state probabilities:

αi
n = Pr{Sn = i|yn−1}, (17)

βi
n = Pr{Sn = i|xn−1, yn−1}. (18)

Some of the main properties of this FSC are listed in Appendix A. For an FSC with these

properties, the following theorem holds:

Theorem 1. For independent and identically distributed (iid) inputs, theNS-dimensional random

vectorsαn = [α1
n, α

2
n, . . . , α

NS

n ] andβn = [β1
n, β

2
n, . . . , β

NS

n ] are Markov chains that converge to

steady distributions which are independent of the initial channel state [40].

This theorem is a direct result of the FSC being stationary and ergodic. This FSC has a unique

stationary distribution regardless of the initial state distributions. The stationary distribution is

also known as theequilibrium or steady statedistribution.

Although the FSC model for the SPAD array channel accurately represents the properties of

the channel memory, it is mathematically intractable when it comes to information rate analysis.

Therefore, in the following, we introduce two auxiliary DMCs. We will use these channels in

Section IV for the information rate analysis.

A. Auxiliary DMCs

The first auxiliary channel is a DMC in which the ISI is ignored. More precisely, this DMC is

only subject to the primary dead time losses. So the PMF, mean and variance given in (4), (5a)

and (5b), respectively, describe the photocount statistics of each SPAD in the array. Recall from

Section II-A2, that the single SPADs are assumed to be free at the beginning of each counting

interval (i.e., time slots of the communication system), thus these expressions do not take the

effect of ISI impairments into account. Hereinafter, this channel is referred to as DMC1. The

3An FSC is a discrete-time channel for which the distribution of the channel output depends on both the input and the

underlying channel state [39]. This allows the output to have an implicit dependence on previous inputs and outputs via the

channel state.
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following conditional probability describes the communication channel model of DMC1:

Pr{yn|xn} =
1

√

2πσ2
Yn|Xn

exp

[

−(yn − µYn|Xn
)2

2σ2
Yn|Xn

]

, xn ∈ R
+ and yn ∈ Z

+ (19)

with

µYn|Xn
=

Narray
∑

m=1

A1

(

xn + λb
Narray

)

, (20a)

σ2
Yn|Xn

=

Narray
∑

m=1

B1

(

xn + λb
Narray

)

, (20b)

whereA1(λ) = µK as given in (5a) andB1(λ) = σ2
K as given in (5b).

The second auxiliary channel is a DMC, denoted by DMC2, in which there is an output power

degradation that arises due to the memory introduced by the ISI distortion. This is inspired

by the work presented in [41]–[43]. Recall from Theorem 1 that the SPAD Markov process

reaches equilibrium. Further, the photocount statistics of consecutive intervals asymptotically

become independent in the steady state. Therefore, we can adopt the steady state distribution

for the DMC2. This reflects the effects of both primary dead time losses and the average ISI. In

this paper, the steady state distributions are obtained through Monte Carlo simulations, as the

analytical expressions are unwieldy. Comprehensive details of the Monte Carlo simulations can

be found in [33].

In the next section, we will show that the auxiliary channel DMC1 provides an upper bound

and DMC2 gives a lower bound on the information rate of the SPAD array.

IV. I NFORMATION TRANSFER RATE ANALYSIS

In this section, the information transfer rates of the SPAD array channel and the auxiliary

DMCs are investigated.

A. Information Rate Analysis for the SPAD Array Channel

As discussed in Section III, the SPAD Markov chain is stationary and ergodic over the finite

state spaceS. Therefore, the effect of its initial state dies away asn grows and the FSC is

indecomposable [39]. The capacity of an indecomposable FSC is independent of its initial state,

and is given by [39]:

C = lim
n→∞

max
PXn(xn)

1

n
I(Xn; Y n) (21)
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11

wherePXn(xn) denotes the input distribution onXn. Due to practical considerations and device

limitations, such as the saturation of SPAD receivers at high intensities, the input signal is often

subject to peak and average power constraints. Also, sinceXn is the light intensity, the constraints

are directly imposed onXn. In addition,Xn should be nonnegative. Thus, the constraints are:

0 ≤ Xn ≤ A, (22a)

E [Xn] ≤ E , (22b)

whereA andE are the peak and average powers, respectively. Without loss of generality, it is

assumed that0 ≤ E ≤ A andA is finite.

The mathematical simplification of the capacity expression given in (21) with general input

distributions is intractable. In this study, we focus on iid inputs. Therefore, the maximization

is performed over all admissible input distributions satisfying the constraints given in (22), for

which PXn(xn) =
n
∏

i=1

PX(xi). Denote the resulting “maximum information rate” byIiid. It is

evident thatIiid < C. Despite the assumption of iidXi’s, the mathematical simplification and the

numerical calculation ofIiid still remain cumbersome and as a result, we resort to establishing

lower and upper bounds onIiid. The following theorem states that the maximum achievable

information rate of the SPAD array channel with iid inputs is bounded by the capacities of the

two DMC channels introduced in Section III-A.

Theorem 2. The maximum information rateIiid is bounded as:

CDMC2
≤ Iiid ≤ CDMC1

(23)

whereCDMC1
andCDMC2

are the capacities of DMC1 and DMC2, respectively, and the equalities

hold if and only ifδ = 0. Hereinafter, we useIU = CDMC1
and IL = CDMC2

to refer to these

bounds.

Proof: Please refer to Appendix B.

B. Capacity Analysis for the Auxiliary DMCs

As discussed in Section III-A, the mean and variances of the DMCs aresignal-dependent,

unlike the classical Gaussian channels [44]. Such a class of Gaussian channels whose conditional

output distribution given the channel input is Gaussian with input-dependent mean and variance

are termed as conditionally Gaussian (CG) channels [45], [46]. Although the properties of

such channels have been studied in the literature, their capacity is not yet known [45], [46].
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Nevertheless, it is well known that subject to peak and average power constraints, the channel

capacity is achievable and the capacity-achieving distribution is unique and discrete with a finite

number of mass points for finiteA andE [45], [46]. In what follows, some of the findings in

the aforementioned reference articles are summarized and adopted for studying the capacity of

the auxiliary DMCs.

Assume an input distribution defined over constellationψx = {a1, a2, . . . , al}, with probability

distributionψp = {p1, p2, . . . , pl}, wherel = ‖ψx‖ and0 ≤ a1 < a2 < · · · < al ≤ A. Denote by

PX the corresponding cumulative distribution function (CDF), that is:

dPX = p1δ(x− a1) + p2δ(x− a2) + · · ·+ plδ(x− al). (24)

whereδ(·) is the Dirac delta function. Also, letPX be the set of all input distributions satisfying

the constraints defined in (22):

PX ,

{

PX :

∫ A

0

dPX = 1,E [X ] ≤ E
}

. (25)

For the DMC channel under consideration, letpY |X(y|x) be the conditional probability ofY

givenX. For eachPX , denote the corresponding distribution ofY by pY (y;PX), the marginal

entropy ofY by H(Y ;PX), the conditional entropy ofY given X by H(Y |X ;PX), and the

mutual information betweenY andX by I(PX) [47]:

pY (y;PX) =

∫

x

pY |X(y|x)dPX (26)

H(Y ;PX) = −
∑

y

pY (y;PX) log2 pY (y;PX) (27)

H(Y |X ;PX) =
1

2

∫

x

log2 2πeσ
2 dPX (28)

I(PX) =

∫

x

[

∑

y

pY |X(y|x) log2
pY |X(y|x)
pY (y;PX)

]

dPX (29)

And the channel capacity is [47]:

C = max
PX∈PX

I(PX) . (30)

Let the capacity-achieving values ofψx, ψp, and PX subject to constraintsA and E , be

denoted byψ∗
x(A, E), ψ∗

p(A, E), andP ∗
X(A, E), respectively. Some of the main properties of the

capacity-achieving distribution are as follows:

• Existence and uniqueness: There exists a unique probability measureP ∗
X satisfying the

bounded-input and average power constraints which maximizesI(PX) [45, Theorem 1].
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Algorithm 1 Search algorithm for finding the capacity-achieving input distribution.
Input: A, E
Output: C, P ∗

X

1: procedure CAPACITY(A, E)
2: l ← 2
3: Solve (30) under the constraints that‖ψx‖ = l anda1 = 0. ⊲ See [44].
4: Determineǫ(l) according to (33).
5: if ǫ(l) < 0 then
6: l ← l + 1
7: go to 3
8: end if
9: if (31) holds for allx ∈ [0,A] then

10: returnC andP ∗
X

11: else
12: l ← l + 1
13: go to 3
14: end if
15: end procedure

• Necessary and sufficient condition: P ∗
X is capacity-achieving if and only if there existsǫ ≥ 0

such that for allx ∈ [0,A] [45, Theorem 2]:

Q(x;P ∗
X)− I(P ∗

X)−
1

2
log2 2πeσ

2 − ǫ(x− E) ≤ 0, (31)

where

Q(x;PX) , −
∑

y

pY |X(y|x) log2 pY (y;PX). (32)

• Discreteness: The capacity-achieving distributionP ∗
X , is discrete and consists of a finite set

of mass points [45, Theorem 3].

• Mass point at zero: The capacity-achieving distribution always contains a mass point located

at zero [45, Proposition 1]. That is,0 ∈ ψ∗
x(A, E). Therefore,

ǫ =
1

E

[

I(P ∗
X)−Q(0;P ∗

X) +
1

2
log2[2πeσ

2]

]

. (33)

Although the above properties of the capacity-achieving distributions for the CG channels are

known, closed-form analytical expressions for the capacity are unknown in general. Therefore,

numerical methods are applied in order to compute the capacity and capacity-achieving distri-

butions of the CG channels. We also follow a similar approach and obtain the optimal input

distribution and the capacity of the auxiliary DMCs via the algorithm presented in Algorithm 1.

This algorithm is adopted from [45].
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Fig. 2. Bounds on the information rate of the SPAD array for several array sizes:A = 50, E = 20 andKb = 5.

In Algorithm 1, the inputs areA and E . The algorithm initializes with a binary distribution

(l = 2). In each iteration, first the optimalPX which maximizesI(PX) is obtained using the

method presented in [44]. More details can be found in [48], [49]. Since a mass point atx = 0

always exits,ǫ(l) is determined using (33). Failure of the necessary conditionǫ(l) > 0 indicates

that thisPX is not optimal and the current number of mass points,l, is not sufficient. Thus,

the number of mass points should be increased by one, and the distribution functionPX which

maximizes the information rate (subject to constraints) should be determined again. Ifǫ(l) > 0,

then the necessary and sufficient condition in (31) is tested. If it is satisfied, thenPX is the

capacity-achieving probability measure. Otherwise,l is increased by one and the procedure is

repeated.

C. Numerical Results and Discussions

In the following, some numerical results are provided for the above analysis. Note that the

mean and variance of the SPAD array photocounts and both of the DMC channels are signal-

dependent due to the dead time. Therefore, the dead time is the parameter that determines the

degree of signal dependency.

Fig. 2 illustrates the bounds on the SPAD array maximum information rate as a function
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of the dead time ratioδ for A = 50, E = 20, Kb = 5, and various array sizes4. As seen

in Fig. 2a, the upper bounds remain constant forδ ≥ 1. According to (4), forδ ≥ 1, each

SPAD in the array can detect at most one photon (kmax = 1) and the photocounts follow a

Bernoulli distribution. Accordingly, other than limitingkmax, the dead time does not affect the

array photocount distribution, and therefore the upper bounds remain constant forδ values larger

than1. As shown in Fig. 2, forδ ≤ 0.1, the bounds are tight for all the array sizes. This means

that in all the arrays, the ISI distortion is negligible in this range. In addition, the bounds remain

tight for 0.1 < δ ≤ 1 if Narray ≥ 256.

Fig. 3 shows the bounds forNarray = 64, as a function of the peak power constraint,A, in

Figs. 3a and 3b, and as a function of the average power constraint,E , in Figs. 3c and 3d. In

these figures, two different background noise levels (Kb = 5 and10) and two dead time ratios

(δ = 0.1 and 1) are considered. From Figs. 3a and 3c, it is seen that forδ = 0.1, the bounds

are tight, confirming the negligible effect of ISI. However, according to Figs. 3b and 3d, with

δ = 1, ISI is significant, leading to a gap between the bounds.

In Fig. 4, the bounds are provided for the array ofNarray = 1024 considering two different

background noise levels and dead time ratios. As observed in this figure, the bounds are tight for

Narray = 1024 for all the parameter values. According to our extensive numerical investigation

of the bounds, the following conclusions can be drawn.

The maximum achievable information rates of:

• the SPAD array ofNarray = 64 with δ ≤ 0.1,

• the SPAD array ofNarray = 1024 with δ ≤ 1,

can be accurately approximated by their bounds. This means that in these cases, the SPAD array

can be well approximated by the auxiliary DMCs. Figs. 2–4 support these statements. In the

following numerical results, this approximation is used and the effect of different parameters on

the capacity and the capacity-achieving input distribution are investigated.

In Fig. 5 the effect of peak power constraint,A, and the average power constraint,E , on the

optimal mass points (ψ∗
x) and the corresponding probability measure (ψ∗

p) is presented for the

array of 64 SPADs. In these figures, the parametersδ andKb are assumed to remain fixed as

follows: δ = 0.1, Kb = 5. Similarly, in Fig. 6,ψ∗
x andψ∗

p are provided for an array of1024

4As a practical example of these values, at typical500 lux ambient light conditions, the background intensity level reaching

a 1 mm2 detector is aroundλb = 1.5 × 10
9 counts per second. This corresponds toKb = 15 photons per symbol, assuming

on-off keying (OOK) modulation with a bit interval ofT = 10 ns. Also, a signal average count ofKs = 50 corresponds to a

received optical power of3 mW/m2 at a wavelength of400nm.

Page 15 of 34

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



16

10 20 30 40 50
0

0.5

1

1.5

2

(a) δ = 0.1

10 20 30 40 50
0

0.5

1

1.5

2

(b) δ = 1

5 10 15 20 25 30
0

0.5

1

1.5

2

(c) δ = 0.1

5 10 15 20 25 30
0

0.5

1

1.5

2

(d) δ = 1

Fig. 3. Bounds on the information rate of SPAD array forNarray = 64: (a),(b)E = 20; (c),(d) A = 50.

SPADs withδ = 1 andKb = 10. In Fig. 7 the effect of dead time onψ∗
x andψ∗

p is shown for

the array ofNarray = 1024. From Figs. 5–7, the following remarks are deduced:

• The capacity-achieving measure(ψ∗
x, ψ

∗
p) contains two mass points, one atx = 0 and one

at x = A, for all the parameter values. In [45], it is proved thatx = 0 is always a mass

point of (ψ∗
x, ψ

∗
p). However, it is not proved whetherx = A is also a mass point in general.

• As A increases, more mass points are required for achieving the capacity. In the presented

range of parameters, the variance of the signal-dependent noise term is almost a linear

function of the signal power. As a result, for higher values ofA, the average signal-dependent

noise power is higher; hence, a signalling scheme with a larger constellation size is more

favourable.

• As E increases, the capacity also increases almost untilE ≈ 0.5A. After this point, the
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Fig. 4. Bounds on the information rate of SPAD array forNarray = 1024: (a),(b)E = 20; (c),(d) A = 50.

channel capacity remains constant. This is because with the given constraint on the peak

power (A = 50), the average power of the optimum input distribution cannot follow the

average power constraint closely, i.e., it cannot achieve average powers larger than0.5A.

In addition, for smaller values ofE , more mass points are required to achieve the capacity,

although the closer the mass points toA, the smaller its corresponding probability, as seen for

example in Figs. 5c and 6c forE = 1. Another important observation is that forNarray = 1024,

if δ ≤ 1, the capacity-achieving measure(ψ∗
x, ψ

∗
p) does not depend onδ (see Fig. 7). This means

that in this large array the impact of the dead time is effectively cancelled. As a numerical

example, assuming a typical dead time of10 ns, using a discrete-time signalling scheme with

5 levels, this array can achieve an information rate of1.8 bits/channel use withA = 50 and

E = 20. This is equivalent to a maximum data rate of180 Mbits/s with an arbitrarily small BER.
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Fig. 5. SPAD array capacity-achieving distributions forNarray = 64, δ = 0.1 andKb = 5: (a),(b)E = 20; (c),(d) A = 50.

V. SPAD-BASED OPTICAL COMMUNICATION SYSTEM

In this section, the bit error performance of a SPAD-based optical system with OOK modu-

lation is studied. The OOK modulation is often considered as a benchmark modulation scheme

for assessing the error performance of photon counting channels. It is also a special case of the

general discrete-time signalling scheme (as studied in the previous section) which has only two

intensity levels. Here, the performance of the system is affected by the SPAD dead time and the

background counts. In this system, both the primary and the secondary counting losses increase

the error probability and limit the maximum achievable data rate of the system.

Consider OOK signalling with a bit time ofT seconds, hence, a data rate ofR = 1/T bits/s.

In OOK, the information bits are transmitted through the intensity of light, where a bit “1” shows

the presence of an optical signal pulse and a bit “0” indicates the absence of the signal pulse
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Fig. 6. SPAD array capacity-achieving distributions forNarray = 1024, δ = 1 andKb = 10: (a),(b)E = 20; (c),(d) A = 50.

during each bit interval. Assume that the signal and noise intensities have a uniform spatial

distribution over the array area. Denote the optical signal and the background noise photon rates

by λs and λb, respectively, and defineKs = λsT andKb = λbT as the average signal and

background noise counts per bit interval. Letp0Y (y) and p1Y (y) denote the probabilities ofy

photocounts, when “0” or “1” are transmitted, respectively.

A. Hypothesis Testing

Consider a classical binary detection process where the hypothesis “H0” represents the case

when a “0” is sent and “H1” represents the hypothesis that a “1” is transmitted. The receiver

attempts to determine the correct bit based upon a single observation of the aggregate number of

array photocounts over each bit interval. The detection strategy which minimizes the probability
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Fig. 7. SPAD array capacity-achieving distributions forNarray = 1024, A = 50, E = 20 andKb = 5.

of error for the case of equally likely bits is maximum-likelihood detection. Accordingly, the

decision is made based on a likelihood ratio test, defined as:

L(y) =
p1Y (y)

p0Y (y)

H1

≷
H0

1, (34)

wherep1Y (y) ∼ N (µ1, σ
2
1) andp0Y (y) ∼ N (µ0, σ

2
0). The above likelihood ratio test simplifies to

a single threshold test for the SPAD array. The optimum threshold value is given by [36]:

yth =

µ0

σ2
0

− µ1

σ2
1

+

√

(

µ0

σ2
0

− µ1

σ2
1

)2

−
(

1

σ2
0

− 1

σ2
1

)[(

µ2
0

σ2
0

− µ2
1

σ2
1

)

+2 ln

(

σ0
σ1

)]

1

σ2
0

− 1

σ2
1

. (35)

This threshold can be further approximated as [36]:

yth =
µ1σ0 + µ0σ1
σ0 + σ1

. (36)

Note that this threshold depends onµ0, µ1, σ0, andσ1 which are all functions of the average

photon rates from the optical signal and background noise,λs andλb. Note thatλs andλb must

be known exactly to optimally set the threshold, and this is a technical challenge with the OOK

modulation.

B. Bit Error Performance

In OOK demodulation, the number of array photocounts is compared with the thresholdyth

provided in (35). An error will occur ify ≤ yth when a “1” bit is sent, or ify > yth, when a
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“0” bit is sent. The probability of error for equally likely bits is [36], [37]:

Pe =
1

2

∞
∑

y=⌊yth⌋+1

p0Y (y) +
1

2

⌊yth⌋
∑

y=0

p1Y (y). (37)

With the thresholdyth, the minimum error probability is ensured. By replacing the discrete

variabley with a continuous variabley′, Pe can be approximated as:

Pe
∼= 1

2

∞
∫

yth

p0(y
′) dy′ +

1

2

yth
∫

0

p1(y
′) dy′

=
1

2
Q

(

yth − µ0

σ0

)

+
1

2
Q

(

µ1 − yth
σ1

)

, (38)

whereQ(x) = 1/
√
2π
∫∞

x
exp(−α2/2) dα is the Q-function. In the above equation,p0(y′) and

p1(y
′) are the continuous approximations ofp0Y (y) andp1Y (y), respectively. With the approximate

threshold given in (36),Pe simplifies to:

Pe
∼= Q

(

µ1 − µ0

σ1 + σ0

)

. (39)

The approximate error probability in (39) suggests thatPe depends only on the difference of the

signal and background noise mean values. Therefore, any contribution to bothµ1 andµ0, such

as from dark currents, would not effect theµ1 − µ0 term, these will however contribute to the

variances. The effective signal-to-noise ratio (SNR) can then be defined as:

γ =
(µ1 − µ0)

2

(σ1 + σ0)
2

. (40)

C. Numerical Results and Discussions

In the following we present the bit error performance results of the OWC system with SPAD

arrays. Throughout the calculations and simulations, it is assumed that the array elements are

identical. In all the figures, the BER results are reported as a function ofKs or Kb or δ for

different array sizes. Also, a data rate of10 Mbits/s andCFF = 1 are considered. Therefore,

dead times of100 ns and10 ns correspond toδ = 1 andδ = 0.1, respectively.

In all the numerical and simulation results of this section, the ISI effect is considered, unless

stated otherwise. Since closed-form expressions of the ISI-modified photocount distributions are

not available, in ‘semi-analytical’ results, the required PMFs are obtained through Monte Carlo

methods and then substituted in the analytical expressions of the error probability. To obtain

the required PMFs, when generating a Poisson arrival process and recording the number of
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Fig. 8. OOK BER performance with a SPAD array ofNarray = 64 andδ = 0.1.

photocounts according to the dead time effects, the arrival time of the first photon in each bit

interval is compared with the arrival time of the last photocount in the previous bit interval to

see whether the first photon is lost or not.

In Fig. 8, the exact error probability given in (37) is numerically evaluated and compared

with the approximate error probability of (39) and also the Monte Carlo simulation results for

an array of64 SPADs with dead time ratio ofδ = 0.1. Although, the discrete threshold values

cause some ripples in the curves, (39) can well approximate the error probability. Hereinafter,

the approximate error probability expression given in (39) is adopted for the BER calculations.

The BER curves are based on the analytical models, unless otherwise stated.

C.1. ISI

Fig. 9 presents the effect of ISI on the BER of two arrays with64 and1024 SPADs. For each

array two cases are considered, a short dead time (δ = 0.1) and a long dead time (δ = 1). For

δ = 0.1, the ISI is negligible in both arrays. However, the long dead time ofδ = 1 results in

significant ISI impairment for the array of sizeNarray = 64, while the array of1024 SPADs is

very robust to the ISI. These results indicate that large arrays can suppress the ISI effectively.

The reason is that their effective dead time is shorter. Nonetheless, note that the ISI is stronger

in higher photon rates. If the photon rate is very high, such that all the SPADs in a large array

are saturated, then even the large array may not be able to alleviate the adverse impact of ISI.

This case does not take place for the photon rate regimes considered in this paper.

Page 22 of 34

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



23

0 10 20 30 40
10-4

10-3

10-2

10-1

100

(a) Narray = 64, δ = 0.1
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(d) Narray = 1024, δ = 1

Fig. 9. The effect of ISI on the BER results.

C.2. Array Size

In Fig. 10, the BER of three SPAD arrays withNarray = 16, 64, and 1024 are compared for

δ = 0.1 and δ = 1. To make a fair comparison, it is assumed that the total sensitive area of

the arrays is equal and the average number of signal counts or background noise counts per bit

interval is the same for all three arrays. Please note that with this assumption, each SPAD in the

array of1024 SPADs receives lower signal and background noise levels compared to each SPAD

in the array of64 elements. According to Fig. 10a, all arrays perform the same forKb = 1,

while for Kb = 5 arrays with64 and1024 elements slightly outperform the array of16 SPADs.

For δ = 1 as in Fig. 10b, arrays with larger sizes show better error performance for various

average background noise levels.
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Fig. 10. BER results of SPAD array receivers with (a)δ = 0.1 and (b)δ = 1.
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Fig. 11. The BER= 10
−3 contours as a function of the dead time ratio and the average number of photons per bit time

required by the SPAD array.

C.3. Dead Time

Fig. 11 shows the effect of dead time on the average number of photons per bit time (i.e.,Ks)

required by the SPAD array to achieve a particular BER for OOK modulation. In this figure

the BER= 10−3 contours are displayed as a function ofδ andKs for a single SPAD and three

different array sizes. The average background noise count level isKb = 1 in Fig. 11a and

Kb = 5 in Fig. 11b.

The counting losses due to the dead time are mitigated to some extent when several SPADs

Page 24 of 34

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



25

operate in parallel inside an array. It is very unlikely that all the SPADs of an array become

inactive at the same time. In low photon rate regimes, if the dead time is short (compared to

the bit interval), the use of large size SPAD arrays does not offer considerable performance

improvements. In high photon rate regimes, or in the case of long dead times, larger array sizes

are required. In such cases, smaller arrays may not achieve the target BER even in higher SNRs,

as increasing the optical power leads to the saturation of the SPAD array.

According to Fig. 11a, for shorter dead time durations (δ < 0.5), all three arrays provide

BER ≤ 10−3 with Ks ≈ 16. However, for longer dead times (δ > 0.5), larger arrays require

fewer number of photons, i.e., less optical power, to achieve BER= 10−3. For instance, for

Narray = 16, if δ < 1, the target BER can be achieved withKs ≈ 16. As the dead time increases,

many of the arriving photons get lost andKs increases very rapidly, such thatKs > 80 is

required forδ > 1. This sharp increase inKs is due to the saturation of the SPAD array. With

Narray = 1024 the limiting effect of dead time is almost eliminated, such that regardless of the

value of δ, BER = 10−3 is guaranteed withKs < 20. Note that depending on the background

noise level, the target BER may not be achieved at all; e.g. as in Fig. 11a, forNarray = 64 and

δ > 4.

Consider a target BER of10−3 and denote byηarray the ratio of requiredKs for a single

SPAD to the requiredKs for a SPAD array. This ratio can be interpreted as the power gain of

the SPAD array compared to the single SPAD for achieving the target BER of10−3:

ηarray

∣

∣

∣

∣

BER=10−3

=
Ksingle

s

Karray
s

. (41)

Note that the total active area of the array is assumed to be the same as that of the single SPAD.

Thus, it is fair to say that the SPAD array requires less power to achieve a target BER. Fig. 12

depictsηarray for the array of1024 SPADs. To obtain some of the curves in this figure, minor

data extrapolation has been applied.

In Fig. 13, the requiredKs for achieving some target BERs is plotted as a function ofKb

for Narray = 64 and 1024. According to this figure, the minimum requiredKs to achieve the

target BER is constant forKb ≤ 10−2. However, forKb > 10−2, the requiredKs grows asKb

increases. ForNarray = 64, as shown in Fig. 13a, a higherKs is needed to maintain the system

performance in the presence of dead time. However, forNarray = 1024 (see Fig. 13b) the effect

of dead time is negligible even for larger values ofKb.
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Fig. 12. Power gain of a SPAD array ofNarray = 1024 for BER = 10
−3.
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Fig. 13. The BER contours as a function of the average number of signal counts per bit time and average background counts

per bit time.

C.4. Background Noise

VI. CONCLUSION

In this study, the photon counting characteristics, the information rate and the bit error

performance of SPAD arrays were studied. It was shown that for sufficiently large SPAD

arrays, the photocount distribution can be well approximated by a Gaussian distribution with

dead-time-modified mean and variance. The SPAD array was modelled as a communication
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channel with a finite memory arising from the dead-time-induced ISI distortions. The SPAD

array information rates for a discrete-time signalling scheme were analysed. Using a numerical

algorithm, the capacities of two auxiliary channels, subject to average and peak power constraints

were evaluated, and the bounds on the information rate of the SPAD array were established. The

numerical results demonstrated that in larger arrays the ISI is insignificant. Thus, the SPAD array

can be well approximated as a memoryless channel. As such, it is found that for a large array,

the optimum input distribution is discrete, consists of a finite set of mass points, and always

contains a mass point at zero. In addition, the bit error performance of a SPAD-based OWC

system was assessed. The exact and approximate expressions for the error probability of OOK

modulation were obtained. The performance results showed that, compared with a single SPAD

of the same sensitive area, the SPAD array can tolerate longer dead times maintaining the system

performance and requires less signal power to achieve the same probability of error.

The results of this study confirm that by using an array of SPADs, the counting losses arising

from the dead time can be mitigated. Hence, the bit error performance and the data rate of the

OWC system can be improved.

This study has provided new insights into the application of SPAD receivers for OWCs. It

highlights the trade-off between the SPAD photon counting performance and the data rates of

OWC systems; in high data rates the existence of dead time causes significant counting losses and

thus, significant data loss. The results of this study can be used as a benchmark for evaluating the

efficiency of practical SPAD-based optical systems. They are particularly required for designing

efficient modulation schemes, and optimizing the device structure and operating conditions to

maximize the achievable data rate.

APPENDIX A

MAIN PROPERTIES OF THESPAD FSC MODEL

Some of the main properties of the SPAD FSC model are presented in this appendix.Ac-

cording to the law of total probability, the following equation holds for the conditional

probability at time n:

Pr{yn|xn, Sn} =
NS
∑

i=1

pi(yn|xn)Pr{Sn = i} (42)

wherepi(yn|xn) = Pr{yn|xn, Sn = i}. Since the channels inS are memoryless:

Pr{yn|xn, Sn, x
n−1, Sn−1, yn−1} = Pr{yn|xn, Sn} (43)
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If the xn’s are independent, then:

Pr{yn, xn|Sn, S
n−1, xn−1, yn−1} = Pr{yn, xn|Sn} (44a)

Pr{yn, xn|Sn} =
n
∏

i=1

Pr{yi, xi|Si} (44b)

Pr{yn|Sn, Sn−1, yn−1} = Pr{yn|Sn} (44c)

APPENDIX B

PROOF OFTHEOREM 2

The information rateI(Xn; Y n) can be written as [39]:

I(Xn; Y n) = H(Y n)−H(Y n|Xn), (45)

where

H(Y n) =

n
∑

i=1

H(Yi|Y i−1), (46a)

H(Y n|Xn) =

n
∑

i=1

H(Yi|Xi, X
i−1, Y i−1). (46b)

The summation terms in each of the above equations are nonnegative and monotonically decreas-

ing in i. Thus [40]:

lim
n→∞

1

n

n
∑

i=1

H(Yi|Y i−1) = lim
n→∞

H(Yn|Y n−1), (47a)

lim
n→∞

1

n

n
∑

i=1

H(Yi|Xi, X
i−1, Y i−1) = lim

n→∞
H(Yn|Xn, X

n−1, Y n−1). (47b)

The termH(Yn|Y n−1) can be written in terms ofαn as follows:

H(Yn|Y n−1) = E
[

− log Pr{yn|yn−1}
]

= E

[

− log

NS
∑

i=1

Pr{yn, Sn = i|yn−1}
]

= E

[

− log

NS
∑

i=1

Pr{yn|Sn = i, yn−1}Pr{Sn = i|yn−1}
]

= E

[

− log

NS
∑

i=1

Pr{yn|Sn = i}Pr{Sn = i|yn−1}
]

= E

[

− log

NS
∑

i=1

pi(yn)αn(i)

]

. (48)
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Similarly, H(Yn|Xn, X
n−1, Y n−1) can be written in terms ofβn:

H(Yn|Xn, X
n−1, Y n−1) = E

[

− log Pr{yn|xn, xn−1, yn−1}
]

= E

[

− log

NS
∑

i=1

Pr{yn, Sn = i|xn, xn−1, yn−1}
]

= E

[

− log

NS
∑

i=1

Pr{yn|Sn = i, xn, x
n−1, yn−1}Pr{Sn = i|xn, xn−1, yn−1}

]

= E

[

− log

NS
∑

i=1

Pr{yn|Sn = i, xn}Pr{Sn = i|xn−1, yn−1}
]

= E

[

− log

NS
∑

i=1

pi(yn|xn)βn(i)
]

. (49)

Therefore, according to (45)-(49), the mutual information of the SPAD FSC is given by:

lim
n→∞

1

n
I(Xn; Y n) = lim

n→∞
E

[

− log

NS
∑

i=1

pi(yn)αn(i)

]

− lim
n→∞

E

[

− log

NS
∑

i=1

pi(yn|xn)βn(i)
]

.

(50)

Now consider any iid input distributionPX with the average mutual information ofI∗ as

given in (50). According to Theorem 1,αn andβn converge to steady distributionsα∗ andβ∗,

respectively, andyn be denoted asy∗ in the steady state. Thus:

I∗ = E

[

− log

NS
∑

i=1

pi(y∗)α∗(i)

]

− E

[

− log

NS
∑

i=1

pi(y∗|x)β∗(i)

]

. (51)

Thus:

Iiid , max
PX

I∗. (52)

If the Xi’s are independent, the following inequality holds [50]:

lim
n→∞

1

n
I(Xn; Y n) ≥ lim

n→∞

1

n

n
∑

i=1

I(Xi; Yi) = lim
n→∞

I(Xn; Yn) = I(X ; Y ∗). (53)

Recall from Section III-A that the steady state distributions are adopted for the DMC2. Hence,

according to the inequality in (53), for iid inputs:

Iiid ≥ CDMC2
. (54)
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Now defineŶ n = [Ŷ1, Ŷ2, . . . , Ŷn] whereŶi’s are the ISI-less outputs. At any time instanti, the

following equation holds:

Pr{xi, ŷi, yi} = p(xi) Pr{ŷi|xi}Pr{yi|ŷi, xi}, (55)

where,

Pr{yi|ŷi, xi} =
τ
∫

0

Pr{yi|ŷi, xi, ρ}fρ(ρ)dρ =
τ
∫

0

Pr{yi|ŷi, ρ}fρ(ρ)dρ = Pr{yi|ŷi}. (56)

The second equality holds becauseyi is independent ofxi given ŷi andρ. By substituting (56)

into (55), it is concluded thatXi, Ŷi andYi, and henceXn, Ŷ n andY n form a Markov chain

Xn −→ Ŷ n −→ Y n. According to the data processing inequality [47],I(Xn; Ŷ n) ≥ I(Xn; Y n).

Therefore:

lim
n→∞

1

n
I(Xn; Y n) ≤ lim

n→∞

1

n
I(Xn; Ŷ n)

(⋆)
= lim

n→∞

1

n

n
∑

i=1

I(Xi; Ŷi) = I(X ; Ŷ ),

where in(⋆) the equality holds due to the memorylessness ofŶi’s. The above inequality shows

that Iiid is upper bounded by the information rate of an ISI-less DMC channel, i.e, DMC1:

Iiid ≤ CDMC1
. (57)
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Response to Reviewers’ Comments for

Manuscript TCOM-TPS-19-1459.R1

“The Bit Error Performance and Information

Transfer Rate of SPAD Array Optical Receivers”

Elham Sarbazi, Majid Safari and Harald Haas

The authors would like to express their sincere gratitude to the editor and the
anonymous reviewers for their insightful and constructive comments, which have doubtlessly
improved the quality of the manuscript. We hope that the paper can now be accepted
for publication.

1 Reviewer 2

The answer to my question 2 is not satisfactory. The given statement in the
reply and also (42) still seem wrong. To use a very clean notation, the law
of total probability says the following:

Pr{Y = y} =
∑

i

Pr{Y = y, S = i} =
∑

i

Pr{S = i}Pr{Y = y|S = i} (1)

The left-hand side of (42) now is also conditioned on X = x, i.e., everything
needs to be conditioned on X = x:

Pr{Y = y|X = x} =
∑

i

Pr{Y = y, S = i|X = x}

=
∑

i

Pr{S = i|X = x}Pr{Y = y|X = x, S = i}
(2)

So, I’m missing the term Pr{S = i|X = x} and I do not have a conditioning
on S on the left-hand side. Please explain and fix!

We would like to thank the reviewer for this detailed clarification. We have double
checked this expression and agree with the reviewer about the missing term Pr{Sn = i}.
We have checked all the steps of the proofs given in appendices and confirm
that the rest of the expressions are all correct (e.g., equations (48) and (49)
use the same law and are both correct). As a matter of fact, (42) is only
presented as one property of the channel and has not been used in the proofs.
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In addition, as requested by the reviewer, in the following we rewrite the conditional
probability given in (42). We first drop the conditioning on xn:

Pr{yn|Sn} =
Pr{yn, Sn}
Pr{Sn}

=

NS
∑

i=1
Pr{yn, Sn = i}

Pr{Sn}

=

NS
∑

i=1
Pr{yn|Sn = i}Pr{Sn = i}

Pr{Sn}
(⋆)
=

NS
∑

i=1

Pr{yn|Sn = i}Pr{Sn = i}

(3)

Recalling from Sec. III in the revised manuscript, the state space is defined as S =
{1, 2, . . . , NS} and Sn ∈ S. The equality in (⋆) holds because Pr{Sn} =

∑NS

i=1 Pr{Sn =
i} = 1. Next, we consider conditioning on xn:

Pr{yn|xn, Sn} =
Pr{yn, Sn|xn}
Pr{Sn|xn}

=

NS
∑

i=1
Pr{yn, Sn = i|xn}

Pr{Sn|xn}

(⋆⋆)
=

NS
∑

i=1
Pr{yn|xn, Sn = i}Pr{Sn = i}

Pr{Sn}

=

NS
∑

i=1

Pr{yn|xn, Sn = i}Pr{Sn = i}

(4)

The equality in (⋆⋆) holds because the channel state Sn is independent of xn. In
response to this comment, (42) in the revised manuscript has been updated.
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