2,131 research outputs found

    GNSS Signal Authentication via Power and Distortion Monitoring

    Get PDF
    We propose a simple low-cost technique that enables civil Global Positioning System (GPS) receivers and other civil global navigation satellite system (GNSS) receivers to reliably detect carry-off spoofing and jamming. The technique, which we call the Power-Distortion detector, classifies received signals as interference-free, multipath-afflicted, spoofed, or jammed according to observations of received power and correlatio n function distortion. It does not depend on external hardware or a network connection and can be readily implemented on many receivers via a firmware update. Crucially, the detector can with high probability distinguish low-power spoofing from ordinary multipath. In testing against over 25 high-quality empirical data sets yielding over 900,000 separate detection tests, the detector correctly alarms on all malicious spoofing or jamming attack s while maintaining a <0.5% single-channel false alarm rate.Aerospace Engineering and Engineering Mechanic

    Adaptive multicoding and robust linear-quadratic receivers for uncertain CDMA frequency-selective fading channels

    Get PDF
    Wideband Code Division Multiple Access (WCDMA) communications in the presence of channel uncertainty poses a challenging problem with many practical applications in the wireless communications filed. In this dissertation, robust linear-quadratic (LQ) receivers for time-varying, frequency-selective CDMA channels in the presence of uncertainty regarding instantaneous channel state information are proposed and studied. In order to enhance the performance of the LQ receivers, a novel modulation technique adaptive multicoding is employed. We proposed a simple, intuitively appealing cost function the modified deflection ratio that can be maximized to find signal constellations and associated LQ receivers that are optimal in a certain sense. We discuss the properties of the proposed LQ cost function and derive a related adaptive algorithm for the simultaneous design of signals and receivers based on a simple multicoding technique. The Chernoff bound for the LQ receivers is also derived to compensate for the analytical intractability of the probability of bit error. Finally, in order to achieve higher data rate transmission in favorable channels, we extend our approach from binary signals to M-ary signal constellations in a multi-dimension subspace

    GPS Carrier Tracking Loop Performance in the presence of Ionospheric Scintillations

    Get PDF
    The performance of several GPS carrier tracking loops is evaluated using wideband GPS data recorded during strong ionospheric scintillations. The aim of this study is to determine the loop structures and parameters that enable good phase tracking during the power fades and phase dynamics induced by scintillations. Constant-bandwidth and variable-bandwidth loops are studied using theoretical models, simulation, and tests with actual GPS signals. Constant-bandwidth loops with loop bandwidths near 15 Hz are shown to lose phase lock during scintillations. Use of the decision-directed discriminator reduces the carrier lock threshold by ∼1 dB relative to the arctangent and conventional Costas discriminators. A proposed variablebandwidth loop based on a Kalman filter reduces the carrier lock threshold by more than 7 dB compared to a 15-Hz constant-bandwidth loop. The Kalman filter-based strategy employs a soft-decision discriminator, explicitly models the effects of receiver clock noise, and optimally adapts the loop bandwidth to the carrier-to-noise ratio. In extensive simulation and in tests using actual wideband GPS data, the Kalman filter PLL demonstrates improved cycle slip immunity relative to constant bandwidth PLLs.Aerospace Engineering and Engineering Mechanic

    Channel Estimation for Diffusive Molecular Communications

    Full text link
    In molecular communication (MC) systems, the \textit{expected} number of molecules observed at the receiver over time after the instantaneous release of molecules by the transmitter is referred to as the channel impulse response (CIR). Knowledge of the CIR is needed for the design of detection and equalization schemes. In this paper, we present a training-based CIR estimation framework for MC systems which aims at estimating the CIR based on the \textit{observed} number of molecules at the receiver due to emission of a \textit{sequence} of known numbers of molecules by the transmitter. Thereby, we distinguish two scenarios depending on whether or not statistical channel knowledge is available. In particular, we derive maximum likelihood (ML) and least sum of square errors (LSSE) estimators which do not require any knowledge of the channel statistics. For the case, when statistical channel knowledge is available, the corresponding maximum a posteriori (MAP) and linear minimum mean square error (LMMSE) estimators are provided. As performance bound, we derive the classical Cramer Rao (CR) lower bound, valid for any unbiased estimator, which does not exploit statistical channel knowledge, and the Bayesian CR lower bound, valid for any unbiased estimator, which exploits statistical channel knowledge. Finally, we propose optimal and suboptimal training sequence designs for the considered MC system. Simulation results confirm the analysis and compare the performance of the proposed estimation techniques with the respective CR lower bounds.Comment: to be appeared in IEEE Transactions on Communications. arXiv admin note: text overlap with arXiv:1510.0861
    • …
    corecore