3,171 research outputs found

    On generalized Kneser hypergraph colorings

    Get PDF
    In Ziegler (2002), the second author presented a lower bound for the chromatic numbers of hypergraphs \KG{r}{\pmb s}{\calS}, "generalized rr-uniform Kneser hypergraphs with intersection multiplicities s\pmb s." It generalized previous lower bounds by Kriz (1992/2000) for the case s=(1,...,1){\pmb s}=(1,...,1) without intersection multiplicities, and by Sarkaria (1990) for \calS=\tbinom{[n]}k. Here we discuss subtleties and difficulties that arise for intersection multiplicities si>1s_i>1: 1. In the presence of intersection multiplicities, there are two different versions of a "Kneser hypergraph," depending on whether one admits hypergraph edges that are multisets rather than sets. We show that the chromatic numbers are substantially different for the two concepts of hypergraphs. The lower bounds of Sarkaria (1990) and Ziegler (2002) apply only to the multiset version. 2. The reductions to the case of prime rr in the proofs Sarkaria and by Ziegler work only if the intersection multiplicities are strictly smaller than the largest prime factor of rr. Currently we have no valid proof for the lower bound result in the other cases. We also show that all uniform hypergraphs without multiset edges can be represented as generalized Kneser hypergraphs.Comment: 9 pages; added examples in Section 2; added reference ([11]), corrected minor typos; to appear in J. Combinatorial Theory, Series

    Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions

    Get PDF
    I show that there exist universal constants C(r)<C(r) < \infty such that, for all loopless graphs GG of maximum degree r\le r, the zeros (real or complex) of the chromatic polynomial PG(q)P_G(q) lie in the disc q<C(r)|q| < C(r). Furthermore, C(r)7.963906...rC(r) \le 7.963906... r. This result is a corollary of a more general result on the zeros of the Potts-model partition function ZG(q,ve)Z_G(q, {v_e}) in the complex antiferromagnetic regime 1+ve1|1 + v_e| \le 1. The proof is based on a transformation of the Whitney-Tutte-Fortuin-Kasteleyn representation of ZG(q,ve)Z_G(q, {v_e}) to a polymer gas, followed by verification of the Dobrushin-Koteck\'y-Preiss condition for nonvanishing of a polymer-model partition function. I also show that, for all loopless graphs GG of second-largest degree r\le r, the zeros of PG(q)P_G(q) lie in the disc q<C(r)+1|q| < C(r) + 1. Along the way, I give a simple proof of a generalized (multivariate) Brown-Colbourn conjecture on the zeros of the reliability polynomial for the special case of series-parallel graphs.Comment: 47 pages (LaTeX). Revised version contains slightly simplified proofs of Propositions 4.2 and 4.5. Version 3 fixes a silly error in my proof of Proposition 4.1, and adds related discussion. To appear in Combinatorics, Probability & Computin

    Ramsey numbers of ordered graphs

    Full text link
    An ordered graph is a pair G=(G,)\mathcal{G}=(G,\prec) where GG is a graph and \prec is a total ordering of its vertices. The ordered Ramsey number R(G)\overline{R}(\mathcal{G}) is the minimum number NN such that every ordered complete graph with NN vertices and with edges colored by two colors contains a monochromatic copy of G\mathcal{G}. In contrast with the case of unordered graphs, we show that there are arbitrarily large ordered matchings Mn\mathcal{M}_n on nn vertices for which R(Mn)\overline{R}(\mathcal{M}_n) is superpolynomial in nn. This implies that ordered Ramsey numbers of the same graph can grow superpolynomially in the size of the graph in one ordering and remain linear in another ordering. We also prove that the ordered Ramsey number R(G)\overline{R}(\mathcal{G}) is polynomial in the number of vertices of G\mathcal{G} if the bandwidth of G\mathcal{G} is constant or if G\mathcal{G} is an ordered graph of constant degeneracy and constant interval chromatic number. The first result gives a positive answer to a question of Conlon, Fox, Lee, and Sudakov. For a few special classes of ordered paths, stars or matchings, we give asymptotically tight bounds on their ordered Ramsey numbers. For so-called monotone cycles we compute their ordered Ramsey numbers exactly. This result implies exact formulas for geometric Ramsey numbers of cycles introduced by K\'arolyi, Pach, T\'oth, and Valtr.Comment: 29 pages, 13 figures, to appear in Electronic Journal of Combinatoric

    Lower Bounds and Series for the Ground State Entropy of the Potts Antiferromagnet on Archimedean Lattices and their Duals

    Full text link
    We prove a general rigorous lower bound for W(Λ,q)=exp(S0(Λ,q)/kB)W(\Lambda,q)=\exp(S_0(\Lambda,q)/k_B), the exponent of the ground state entropy of the qq-state Potts antiferromagnet, on an arbitrary Archimedean lattice Λ\Lambda. We calculate large-qq series expansions for the exact Wr(Λ,q)=q1W(Λ,q)W_r(\Lambda,q)=q^{-1}W(\Lambda,q) and compare these with our lower bounds on this function on the various Archimedean lattices. It is shown that the lower bounds coincide with a number of terms in the large-qq expansions and hence serve not just as bounds but also as very good approximations to the respective exact functions Wr(Λ,q)W_r(\Lambda,q) for large qq on the various lattices Λ\Lambda. Plots of Wr(Λ,q)W_r(\Lambda,q) are given, and the general dependence on lattice coordination number is noted. Lower bounds and series are also presented for the duals of Archimedean lattices. As part of the study, the chromatic number is determined for all Archimedean lattices and their duals. Finally, we report calculations of chromatic zeros for several lattices; these provide further support for our earlier conjecture that a sufficient condition for Wr(Λ,q)W_r(\Lambda,q) to be analytic at 1/q=01/q=0 is that Λ\Lambda is a regular lattice.Comment: 39 pages, Revtex, 9 encapsulated postscript figures, to appear in Phys. Rev.

    How to construct a flag complex with a given face vector

    Full text link
    A method that often works for constructing a flag complex with a specified face vector is given. This method can also be adapted to construct a vertex-decomposable (and hence Cohen-Macaulay) flag complex with a specified h-vector
    corecore