3,212 research outputs found

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    A Crevice on the Crane Beach: Finite-Degree Predicates

    Full text link
    First-order logic (FO) over words is shown to be equiexpressive with FO equipped with a restricted set of numerical predicates, namely the order, a binary predicate MSB0_0, and the finite-degree predicates: FO[Arb] = FO[<, MSB0_0, Fin]. The Crane Beach Property (CBP), introduced more than a decade ago, is true of a logic if all the expressible languages admitting a neutral letter are regular. Although it is known that FO[Arb] does not have the CBP, it is shown here that the (strong form of the) CBP holds for both FO[<, Fin] and FO[<, MSB0_0]. Thus FO[<, Fin] exhibits a form of locality and the CBP, and can still express a wide variety of languages, while being one simple predicate away from the expressive power of FO[Arb]. The counting ability of FO[<, Fin] is studied as an application.Comment: Submitte

    Bounded Quantifier Instantiation for Checking Inductive Invariants

    Full text link
    We consider the problem of checking whether a proposed invariant φ\varphi expressed in first-order logic with quantifier alternation is inductive, i.e. preserved by a piece of code. While the problem is undecidable, modern SMT solvers can sometimes solve it automatically. However, they employ powerful quantifier instantiation methods that may diverge, especially when φ\varphi is not preserved. A notable difficulty arises due to counterexamples of infinite size. This paper studies Bounded-Horizon instantiation, a natural method for guaranteeing the termination of SMT solvers. The method bounds the depth of terms used in the quantifier instantiation process. We show that this method is surprisingly powerful for checking quantified invariants in uninterpreted domains. Furthermore, by producing partial models it can help the user diagnose the case when φ\varphi is not inductive, especially when the underlying reason is the existence of infinite counterexamples. Our main technical result is that Bounded-Horizon is at least as powerful as instrumentation, which is a manual method to guarantee convergence of the solver by modifying the program so that it admits a purely universal invariant. We show that with a bound of 1 we can simulate a natural class of instrumentations, without the need to modify the code and in a fully automatic way. We also report on a prototype implementation on top of Z3, which we used to verify several examples by Bounded-Horizon of bound 1

    Finite-Degree Predicates and Two-Variable First-Order Logic

    Get PDF
    We consider two-variable first-order logic on finite words with a fixed number of quantifier alternations. We show that all languages with a neutral letter definable using the order and finite-degree predicates are also definable with the order predicate only. From this result we derive the separation of the alternation hierarchy of two-variable logic on this signature

    Randomisation and Derandomisation in Descriptive Complexity Theory

    Full text link
    We study probabilistic complexity classes and questions of derandomisation from a logical point of view. For each logic L we introduce a new logic BPL, bounded error probabilistic L, which is defined from L in a similar way as the complexity class BPP, bounded error probabilistic polynomial time, is defined from PTIME. Our main focus lies on questions of derandomisation, and we prove that there is a query which is definable in BPFO, the probabilistic version of first-order logic, but not in Cinf, finite variable infinitary logic with counting. This implies that many of the standard logics of finite model theory, like transitive closure logic and fixed-point logic, both with and without counting, cannot be derandomised. Similarly, we present a query on ordered structures which is definable in BPFO but not in monadic second-order logic, and a query on additive structures which is definable in BPFO but not in FO. The latter of these queries shows that certain uniform variants of AC0 (bounded-depth polynomial sized circuits) cannot be derandomised. These results are in contrast to the general belief that most standard complexity classes can be derandomised. Finally, we note that BPIFP+C, the probabilistic version of fixed-point logic with counting, captures the complexity class BPP, even on unordered structures
    • …
    corecore