3 research outputs found

    The Flip Diameter of Rectangulations and Convex Subdivisions

    Full text link
    We study the configuration space of rectangulations and convex subdivisions of nn points in the plane. It is shown that a sequence of O(nlogn)O(n\log n) elementary flip and rotate operations can transform any rectangulation to any other rectangulation on the same set of nn points. This bound is the best possible for some point sets, while Θ(n)\Theta(n) operations are sufficient and necessary for others. Some of our bounds generalize to convex subdivisions of nn points in the plane.Comment: 17 pages, 12 figures, an extended abstract has been presented at LATIN 201

    On the number of rectangulations of a planar point set

    Get PDF
    AbstractWe investigate the number of different ways in which a rectangle containing a set of n noncorectilinear points can be partitioned into smaller rectangles by n (nonintersecting) segments, such that every point lies on a segment. We show that when the relative order of the points forms a separable permutation, the number of rectangulations is exactly the (n+1)st Baxter number. We also show that no matter what the order of the points is, the number of guillotine rectangulations is always the nth Schröder number, and the total number of rectangulations is O(20n/n4)

    Decomposing and packing polygons / Dania el-Khechen.

    Get PDF
    In this thesis, we study three different problems in the field of computational geometry: the partitioning of a simple polygon into two congruent components, the partitioning of squares and rectangles into equal area components while minimizing the perimeter of the cuts, and the packing of the maximum number of squares in an orthogonal polygon. To solve the first problem, we present three polynomial time algorithms which given a simple polygon P partitions it, if possible, into two congruent and possibly nonsimple components P 1 and P 2 : an O ( n 2 log n ) time algorithm for properly congruent components and an O ( n 3 ) time algorithm for mirror congruent components. In our analysis of the second problem, we experimentally find new bounds on the optimal partitions of squares and rectangles into equal area components. The visualization of the best determined solutions allows us to conjecture some characteristics of a class of optimal solutions. Finally, for the third problem, we present three linear time algorithms for packing the maximum number of unit squares in three subclasses of orthogonal polygons: the staircase polygons, the pyramids and Manhattan skyline polygons. We also study a special case of the problem where the given orthogonal polygon has vertices with integer coordinates and the squares to pack are (2 {604} 2) squares. We model the latter problem with a binary integer program and we develop a system that produces and visualizes optimal solutions. The observation of such solutions aided us in proving some characteristics of a class of optimal solutions
    corecore