2,581 research outputs found

    Dynamic scheduling in a multi-product manufacturing system

    Get PDF
    To remain competitive in global marketplace, manufacturing companies need to improve their operational practices. One of the methods to increase competitiveness in manufacturing is by implementing proper scheduling system. This is important to enable job orders to be completed on time, minimize waiting time and maximize utilization of equipment and machineries. The dynamics of real manufacturing system are very complex in nature. Schedules developed based on deterministic algorithms are unable to effectively deal with uncertainties in demand and capacity. Significant differences can be found between planned schedules and actual schedule implementation. This study attempted to develop a scheduling system that is able to react quickly and reliably for accommodating changes in product demand and manufacturing capacity. A case study, 6 by 6 job shop scheduling problem was adapted with uncertainty elements added to the data sets. A simulation model was designed and implemented using ARENA simulation package to generate various job shop scheduling scenarios. Their performances were evaluated using scheduling rules, namely, first-in-first-out (FIFO), earliest due date (EDD), and shortest processing time (SPT). An artificial neural network (ANN) model was developed and trained using various scheduling scenarios generated by ARENA simulation. The experimental results suggest that the ANN scheduling model can provided moderately reliable prediction results for limited scenarios when predicting the number completed jobs, maximum flowtime, average machine utilization, and average length of queue. This study has provided better understanding on the effects of changes in demand and capacity on the job shop schedules. Areas for further study includes: (i) Fine tune the proposed ANN scheduling model (ii) Consider more variety of job shop environment (iii) Incorporate an expert system for interpretation of results. The theoretical framework proposed in this study can be used as a basis for further investigation

    Time-Triggered Co-Scheduling of Computation and Communication with Jitter Requirements

    Full text link
    The complexity of embedded application design is increasing with growing user demands. In particular, automotive embedded systems are highly complex in nature, and their functionality is realized by a set of periodic tasks. These tasks may have hard real-time requirements and communicate over an interconnect. The problem is to efficiently co-schedule task execution on cores and message transmission on the interconnect so that timing constraints are satisfied. Contemporary works typically deal with zero-jitter scheduling, which results in lower resource utilization, but has lower memory requirements. This article focuses on jitter-constrained scheduling that puts constraints on the tasks jitter, increasing schedulability over zero- jitter scheduling. The contributions of this article are: 1) Integer Linear Programming and Satisfiability Modulo Theory model exploiting problem-specific information to reduce the formulations complexity to schedule small applications. 2) A heuristic approach, employing three levels of scheduling scaling to real-world use-cases with 10000 tasks and messages. 3) An experimental evaluation of the proposed approaches on a case-study and on synthetic data sets showing the efficiency of both zero-jitter and jitter- constrained scheduling. It shows that up to 28% higher resource utilization can be achieved by having up to 10 times longer computation time with relaxed jitter requirements.Comment: IEEE Transactions on Computers (2017

    On-line planning and scheduling: an application to controlling modular printers

    Get PDF
    We present a case study of artificial intelligence techniques applied to the control of production printing equipment. Like many other real-world applications, this complex domain requires high-speed autonomous decision-making and robust continual operation. To our knowledge, this work represents the first successful industrial application of embedded domain-independent temporal planning. Our system handles execution failures and multi-objective preferences. At its heart is an on-line algorithm that combines techniques from state-space planning and partial-order scheduling. We suggest that this general architecture may prove useful in other applications as more intelligent systems operate in continual, on-line settings. Our system has been used to drive several commercial prototypes and has enabled a new product architecture for our industrial partner. When compared with state-of-the-art off-line planners, our system is hundreds of times faster and often finds better plans. Our experience demonstrates that domain-independent AI planning based on heuristic search can flexibly handle time, resources, replanning, and multiple objectives in a high-speed practical application without requiring hand-coded control knowledge

    Predictive Performance Modeling for Distributed Computing using Black-Box Monitoring and Machine Learning

    Full text link
    In many domains, the previous decade was characterized by increasing data volumes and growing complexity of computational workloads, creating new demands for highly data-parallel computing in distributed systems. Effective operation of these systems is challenging when facing uncertainties about the performance of jobs and tasks under varying resource configurations, e.g., for scheduling and resource allocation. We survey predictive performance modeling (PPM) approaches to estimate performance metrics such as execution duration, required memory or wait times of future jobs and tasks based on past performance observations. We focus on non-intrusive methods, i.e., methods that can be applied to any workload without modification, since the workload is usually a black-box from the perspective of the systems managing the computational infrastructure. We classify and compare sources of performance variation, predicted performance metrics, required training data, use cases, and the underlying prediction techniques. We conclude by identifying several open problems and pressing research needs in the field.Comment: 19 pages, 3 figures, 5 table

    A computational evaluation of constructive and improvement heuristics for the blocking flow shop to minimize total flowtime

    Get PDF
    This paper focuses on the blocking flow shop scheduling problem with the objective of total flowtime minimisation. This problem assumes that there are no buffers between machines and, due to its application to many manufacturing sectors, it is receiving a growing attention by researchers during the last years. Since the problem is NP-hard, a large number of heuristics have been proposed to provide good solutions with reasonable computational times. In this paper, we conduct a comprehensive evaluation of the available heuristics for the problem and for related problems, resulting in the implementation and testing of a total of 35 heuristics. Furthermore, we propose an efficient constructive heuristic which successfully combines a pool of partial sequences in parallel, using a beam-search-based approach. The computational experiments show the excellent performance of the proposed heuristic as compared to the best-so-far algorithms for the problem, both in terms of quality of the solutions and of computational requirements. In fact, despite being a relative fast constructive heuristic, new best upper bounds have been found for more than 27% of Taillard’s instances.Ministerio de Ciencia e Innovación DPI2013-44461-P/DP
    corecore