19,900 research outputs found

    Tverberg's theorem with constraints

    Get PDF
    The topological Tverberg theorem claims that for any continuous map of the (q-1)(d+1)-simplex to R^d there are q disjoint faces such that their images have a non-empty intersection. This has been proved for affine maps, and if qq is a prime power, but not in general. We extend the topological Tverberg theorem in the following way: Pairs of vertices are forced to end up in different faces. This leads to the concept of constraint graphs. In Tverberg's theorem with constraints, we come up with a list of constraints graphs for the topological Tverberg theorem. The proof is based on connectivity results of chessboard-type complexes. Moreover, Tverberg's theorem with constraints implies new lower bounds for the number of Tverberg partitions. As a consequence, we prove Sierksma's conjecture for d=2d=2, and q=3q=3.Comment: 16 pages, 12 figures. Accepted for publication in JCTA. Substantial revision due to the referee

    Graph removal lemmas

    Get PDF
    The graph removal lemma states that any graph on n vertices with o(n^{v(H)}) copies of a fixed graph H may be made H-free by removing o(n^2) edges. Despite its innocent appearance, this lemma and its extensions have several important consequences in number theory, discrete geometry, graph theory and computer science. In this survey we discuss these lemmas, focusing in particular on recent improvements to their quantitative aspects.Comment: 35 page

    Bounds for graph regularity and removal lemmas

    Get PDF
    We show, for any positive integer k, that there exists a graph in which any equitable partition of its vertices into k parts has at least ck^2/\log^* k pairs of parts which are not \epsilon-regular, where c,\epsilon>0 are absolute constants. This bound is tight up to the constant c and addresses a question of Gowers on the number of irregular pairs in Szemer\'edi's regularity lemma. In order to gain some control over irregular pairs, another regularity lemma, known as the strong regularity lemma, was developed by Alon, Fischer, Krivelevich, and Szegedy. For this lemma, we prove a lower bound of wowzer-type, which is one level higher in the Ackermann hierarchy than the tower function, on the number of parts in the strong regularity lemma, essentially matching the upper bound. On the other hand, for the induced graph removal lemma, the standard application of the strong regularity lemma, we find a different proof which yields a tower-type bound. We also discuss bounds on several related regularity lemmas, including the weak regularity lemma of Frieze and Kannan and the recently established regular approximation theorem. In particular, we show that a weak partition with approximation parameter \epsilon may require as many as 2^{\Omega(\epsilon^{-2})} parts. This is tight up to the implied constant and solves a problem studied by Lov\'asz and Szegedy.Comment: 62 page

    RASCAL: calculation of graph similarity using maximum common edge subgraphs

    Get PDF
    A new graph similarity calculation procedure is introduced for comparing labeled graphs. Given a minimum similarity threshold, the procedure consists of an initial screening process to determine whether it is possible for the measure of similarity between the two graphs to exceed the minimum threshold, followed by a rigorous maximum common edge subgraph (MCES) detection algorithm to compute the exact degree and composition of similarity. The proposed MCES algorithm is based on a maximum clique formulation of the problem and is a significant improvement over other published algorithms. It presents new approaches to both lower and upper bounding as well as vertex selection

    Weighted dependency graphs

    Full text link
    The theory of dependency graphs is a powerful toolbox to prove asymptotic normality of sums of random variables. In this article, we introduce a more general notion of weighted dependency graphs and give normality criteria in this context. We also provide generic tools to prove that some weighted graph is a weighted dependency graph for a given family of random variables. To illustrate the power of the theory, we give applications to the following objects: uniform random pair partitions, the random graph model G(n,M)G(n,M), uniform random permutations, the symmetric simple exclusion process and multilinear statistics on Markov chains. The application to random permutations gives a bivariate extension of a functional central limit theorem of Janson and Barbour. On Markov chains, we answer positively an open question of Bourdon and Vall\'ee on the asymptotic normality of subword counts in random texts generated by a Markovian source.Comment: 57 pages. Third version: minor modifications, after review proces
    • …
    corecore