160,628 research outputs found

    A Posteriori Probabilistic Bounds of Convex Scenario Programs with Validation Tests

    Full text link
    Scenario programs have established themselves as efficient tools towards decision-making under uncertainty. To assess the quality of scenario-based solutions a posteriori, validation tests based on Bernoulli trials have been widely adopted in practice. However, to reach a theoretically reliable judgement of risk, one typically needs to collect massive validation samples. In this work, we propose new a posteriori bounds for convex scenario programs with validation tests, which are dependent on both realizations of support constraints and performance on out-of-sample validation data. The proposed bounds enjoy wide generality in that many existing theoretical results can be incorporated as particular cases. To facilitate practical use, a systematic approach for parameterizing a posteriori probability bounds is also developed, which is shown to possess a variety of desirable properties allowing for easy implementations and clear interpretations. By synthesizing comprehensive information about support constraints and validation tests, improved risk evaluation can be achieved for randomized solutions in comparison with existing a posteriori bounds. Case studies on controller design of aircraft lateral motion are presented to validate the effectiveness of the proposed a posteriori bounds

    Certified Roundoff Error Bounds using Bernstein Expansions and Sparse Krivine-Stengle Representations

    Full text link
    Floating point error is an inevitable drawback of embedded systems implementation. Computing rigorous upper bounds of roundoff errors is absolutely necessary to the validation of critical software. This problem is even more challenging when addressing non-linear programs. In this paper, we propose and compare two new methods based on Bernstein expansions and sparse Krivine-Stengle representations, adapted from the field of the global optimization to compute upper bounds of roundoff errors for programs implementing polynomial functions. We release two related software package FPBern and FPKiSten, and compare them with state of the art tools. We show that these two methods achieve competitive performance, while computing accurate upper bounds by comparison with other tools.Comment: 20 pages, 2 table

    Temporal evolution of generalization during learning in linear networks

    Get PDF
    We study generalization in a simple framework of feedforward linear networks with n inputs and n outputs, trained from examples by gradient descent on the usual quadratic error function. We derive analytical results on the behavior of the validation function corresponding to the LMS error function calculated on a set of validation patterns. We show that the behavior of the validation function depends critically on the initial conditions and on the characteristics of the noise. Under certain simple assumptions, if the initial weights are sufficiently small, the validation function has a unique minimum corresponding to an optimal stopping time for training for which simple bounds can be calculated. There exists also situations where the validation function can have more complicated and somewhat unexpected behavior such as multiple local minima (at most n) of variable depth and long but finite plateau effects. Additional results and possible extensions are briefly discussed

    An Algorithmic Framework for Computing Validation Performance Bounds by Using Suboptimal Models

    Full text link
    Practical model building processes are often time-consuming because many different models must be trained and validated. In this paper, we introduce a novel algorithm that can be used for computing the lower and the upper bounds of model validation errors without actually training the model itself. A key idea behind our algorithm is using a side information available from a suboptimal model. If a reasonably good suboptimal model is available, our algorithm can compute lower and upper bounds of many useful quantities for making inferences on the unknown target model. We demonstrate the advantage of our algorithm in the context of model selection for regularized learning problems

    Improved Uniform Test Error Bounds

    Get PDF
    We derive distribution-free uniform test error bounds that improve on VC-type bounds for validation. We show how to use knowledge of test inputs to improve the bounds. The bounds are sharp, but they require intense computation. We introduce a method to trade sharpness for speed of computation. Also, we compute the bounds for several test cases

    On PAC-Bayesian Bounds for Random Forests

    Full text link
    Existing guarantees in terms of rigorous upper bounds on the generalization error for the original random forest algorithm, one of the most frequently used machine learning methods, are unsatisfying. We discuss and evaluate various PAC-Bayesian approaches to derive such bounds. The bounds do not require additional hold-out data, because the out-of-bag samples from the bagging in the training process can be exploited. A random forest predicts by taking a majority vote of an ensemble of decision trees. The first approach is to bound the error of the vote by twice the error of the corresponding Gibbs classifier (classifying with a single member of the ensemble selected at random). However, this approach does not take into account the effect of averaging out of errors of individual classifiers when taking the majority vote. This effect provides a significant boost in performance when the errors are independent or negatively correlated, but when the correlations are strong the advantage from taking the majority vote is small. The second approach based on PAC-Bayesian C-bounds takes dependencies between ensemble members into account, but it requires estimating correlations between the errors of the individual classifiers. When the correlations are high or the estimation is poor, the bounds degrade. In our experiments, we compute generalization bounds for random forests on various benchmark data sets. Because the individual decision trees already perform well, their predictions are highly correlated and the C-bounds do not lead to satisfactory results. For the same reason, the bounds based on the analysis of Gibbs classifiers are typically superior and often reasonably tight. Bounds based on a validation set coming at the cost of a smaller training set gave better performance guarantees, but worse performance in most experiments

    Geometric proof for normally hyperbolic invariant manifolds

    Full text link
    We present a new proof of the existence of normally hyperbolic manifolds and their whiskers for maps. Our result is not perturbative. Based on the bounds on the map and its derivative, we establish the existence of the manifold within a given neighbourhood. Our proof follows from a graph transform type method and is performed in the state space of the system. We do not require the map to be invertible. From our method follows also the smoothness of the established manifolds, which depends on the smoothness of the map, as well as rate conditions, which follow from bounds on the derivative of the map. Our method is tailor made for rigorous, interval arithmetic based, computer assisted validation of the needed assumptions.Comment: 64 pages, 4 figure

    A Statistical Learning Theory Approach for Uncertain Linear and Bilinear Matrix Inequalities

    Full text link
    In this paper, we consider the problem of minimizing a linear functional subject to uncertain linear and bilinear matrix inequalities, which depend in a possibly nonlinear way on a vector of uncertain parameters. Motivated by recent results in statistical learning theory, we show that probabilistic guaranteed solutions can be obtained by means of randomized algorithms. In particular, we show that the Vapnik-Chervonenkis dimension (VC-dimension) of the two problems is finite, and we compute upper bounds on it. In turn, these bounds allow us to derive explicitly the sample complexity of these problems. Using these bounds, in the second part of the paper, we derive a sequential scheme, based on a sequence of optimization and validation steps. The algorithm is on the same lines of recent schemes proposed for similar problems, but improves both in terms of complexity and generality. The effectiveness of this approach is shown using a linear model of a robot manipulator subject to uncertain parameters.Comment: 19 pages, 2 figures, Accepted for Publication in Automatic

    Theoretical analysis of cross-validation for estimating the risk of the k-Nearest Neighbor classifier

    Full text link
    The present work aims at deriving theoretical guaranties on the behavior of some cross-validation procedures applied to the kk-nearest neighbors (kkNN) rule in the context of binary classification. Here we focus on the leave-pp-out cross-validation (LppO) used to assess the performance of the kkNN classifier. Remarkably this LppO estimator can be efficiently computed in this context using closed-form formulas derived by \cite{CelisseMaryHuard11}. We describe a general strategy to derive moment and exponential concentration inequalities for the LppO estimator applied to the kkNN classifier. Such results are obtained first by exploiting the connection between the LppO estimator and U-statistics, and second by making an intensive use of the generalized Efron-Stein inequality applied to the L11O estimator. One other important contribution is made by deriving new quantifications of the discrepancy between the LppO estimator and the classification error/risk of the kkNN classifier. The optimality of these bounds is discussed by means of several lower bounds as well as simulation experiments
    corecore