251,632 research outputs found

    Minimax studies

    Get PDF
    Effect of nonzero initial conditions on selection of minimax controllers for large launch vehicles and extremal bounded amplitude bounded rate inputs to linear system

    On Stochastic Model Predictive Control with Bounded Control Inputs

    Full text link
    This paper is concerned with the problem of Model Predictive Control and Rolling Horizon Control of discrete-time systems subject to possibly unbounded random noise inputs, while satisfying hard bounds on the control inputs. We use a nonlinear feedback policy with respect to noise measurements and show that the resulting mathematical program has a tractable convex solution in both cases. Moreover, under the assumption that the zero-input and zero-noise system is asymptotically stable, we show that the variance of the state, under the resulting Model Predictive Control and Rolling Horizon Control policies, is bounded. Finally, we provide some numerical examples on how certain matrices in the underlying mathematical program can be calculated off-line.Comment: 8 page

    Finite-Time Resilient Formation Control with Bounded Inputs

    Full text link
    In this paper we consider the problem of a multi-agent system achieving a formation in the presence of misbehaving or adversarial agents. We introduce a novel continuous time resilient controller to guarantee that normally behaving agents can converge to a formation with respect to a set of leaders. The controller employs a norm-based filtering mechanism, and unlike most prior algorithms, also incorporates input bounds. In addition, the controller is shown to guarantee convergence in finite time. A sufficient condition for the controller to guarantee convergence is shown to be a graph theoretical structure which we denote as Resilient Directed Acyclic Graph (RDAG). Further, we employ our filtering mechanism on a discrete time system which is shown to have exponential convergence. Our results are demonstrated through simulations

    Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems

    Full text link
    A new class of non-homogeneous state-affine systems is introduced for use in reservoir computing. Sufficient conditions are identified that guarantee first, that the associated reservoir computers with linear readouts are causal, time-invariant, and satisfy the fading memory property and second, that a subset of this class is universal in the category of fading memory filters with stochastic almost surely uniformly bounded inputs. This means that any discrete-time filter that satisfies the fading memory property with random inputs of that type can be uniformly approximated by elements in the non-homogeneous state-affine family.Comment: 41 page
    corecore