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ABSTRACT

Two brief studies of the effect of non~zero initial conditions on the per-
formance according to the minimax criterion and on the selection of
minimax controllers from a given set of controllers are reported. The
results of two studies of extremal bounded amplitude, bounded rate inputs

to linear systems are also reported,

The first study of the effect of non-zero initial conditions considers one
flight condition for a vehicle of the Saturn V Type with first order gimbal
dynamics. The control configuration has pitch rate, lagged pitch attitude
and normal acceleration feedbacks. Each of the optimal controllers had
one positive pole, one negative pole and a stable complex pair of poles.
The positive pole is small and its magnitude decreases with increasing

magnitude of initial conditions.

The second study of the effect of non-zero initial conditions considers two
flight conditions for '"Model Vehicle Number 2 for Advanced Control
Studies' with no gimbal dynamics. The control configuration has pitch
attitude, pitch rate and lateral velocity feedbacks. The optimal gains are
found to be monotone functions of the magnitude of initial conditions.
Further, the stability of the optimal system tends to increase with

increasing magnitude of initial conditions.

The first study of extremal inputs is restricted to an oscillator. The
theoretical development indicates the relation between several sets of
necessary conditions and one sufficient condition. One set of necessary
conditions is shown to be sufficient and from these conditions general

explicit formulas for extremal inputs are derived.

The last study pertains to the development of computational algorithms for
extremal inputs for general linear stationary systems. Two algorithms
are presented, and an example of computer results obtained from one

algorithm is given.
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FOREWORD

This document partially comprises the final report prepared by Honeywell,
Incorporated for George C. Marshall Space Flight Center, Huntsville,
Alabama, 35812 under Contract NAS 8-11206.

The application of optimal (minimax) control theory to a piecewise constant
approximation of a large launch booster for the first 84 seconds of flight

is presented in NASA CR-546. A linear piecewise constant controller is
determined which minimizes the maximum of several cost items.

The work on this contract was supervised by Mr. C. R, Stone and Dr. E. R.
Rang. Section 2 was prepared by Mr. W. A, Glasser. Section 3 was prepared

by Mr, K. D. Graham, Sections 4 and 5 were prepared by Dr. C. A, Harvey.
Dr. J. Y. S. Luh contributed to the results of Section 4. The linear programming
formulation presented in Section 5 was developed by Dr. P. Treuenfels.
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INTRODUC TION

The need to design controllers for large launch boosters provides the moti-
vation for the minimax studies. Four areas of investigation are discussed.
The first two studies are concerned with the effect of non-zero initial condi-
tions on the selection of minimax controllers, The remaining studies are
aimed at theoretical developments which are necessary for the inclusion of
a bound on the time rate of change of the disturbance in the minimax prob-
lem statement. The inclusion of such a constraint would yield a closer

approximation to disturbances which are encountered in practice.

NON-ZERO INITIAL CONDITIONS

The purpose for studies in Sections 2 and 3 was to examine the effect of
non-zero initial conditions on control cost (performance index) and on
selection of minimax controllers for large launch boosters. In both sec-
tions, rigid vehicles with linear controllers and bounded amplitude winds

are assumed.

Saturn V Study

The vehicle in Section 2 is a typical Saturn V booster with first order
gimbal dynamics for a ten-second flight condition characterized by maxi-
mum dynamic pressure and Mach number of about 1. 7. Gains for a good
controller for this vehicle with zero initial conditions were known from
work on NASA Contract NASw-563 (Honeywell MPG Report 1541-TR 14).
This controller had pitch rate, lagged pitch attitude and normal accelera-

tion feedbacks, Four values of initial conditions were chosen on each




state variable (pitch attitude, pitch rate, lateral velocity, and gimbal angle).
The gain grid chosen represented 54 different controllers and contained the
controller for zero-initial conditions. The wind velocity had a magnitude of

75 meters per second.

It was found that a set of only four controllers minimized the control cost
for all of the 16 initial conditions. In particular, the controller for zero
initial conditions was also best for small values of initial conditions on pitch
attitude, piich rate, gimbal angle, and all values of lateral velocity consi-

dered.

The four best controllers all had one positive and one negative real pole, and
a stable complex pair of poles. The positive pole was small and its magnitude
decreased with increasing magnitude of initial conditions. The closed loop
natural frequency and the damping ratio of the complex pair decreased with

increasing amplitude of initial conditions,

The ranges of values of the positive pole, natural frequency, and damping

ratio of the four best controllers are as follows:
0.001738 < real pole < 0.005408
0.780 cps < £< 0,898 cps

0.201 < ¢ < 0.063

Model Vehicle Number 2 Study

Data for the vehicle in Section 3 is taken from the data package '"Model Vehicle
Number 2 for Advanced Control Studies' and perfect gimbal dynamics were
assumed., A cost item corresponding to bending moment was included in this
study. Two flight conditions were considered: (1) one was sixteen seconds

long near Mach 0, 55 with dynamic pressure about one-third of maximum; and



(2) the second was eight seconds long at Mach 1 with about eight~tenths
maximum dynamic pressure. The conirollers had pitch attitude, pitch
rate, and lateral velocity feedback gains with the wind disturbance intro-
duced in such a manner that the gains could easily be converted to equiva-

lent ones for controllers with pitch attitude, pitch rate, and either normal
acceleration or attack angle feedback signals.

Good controllers for zero initial conditions were known for both flight condi-
tions from Honeywell Report 12003-FTR1. Each had relatively high gains and
all real poles with one of them positive. The positive pole was small for the
first flight condition (real pole at 0.00055) and large for the second one (real
pole at 0, 30809). These particular flight conditions were selected because

it was expected that the influence of initial conditions would be comparatively
large with higher controller gains, and particularly so with the controller having

the large positive pole.

Three iterations of cost computations were performed. A total of 125 con-
trollers was included in each gain grid, Three values of non-zero initial
conditions were chosen for pitch attitude, pitch rate, and lateral velocity,
with a range of four to one between the minimum and maximum values in
each case. The wind velocity was 59 meters per second in the first flight

condition and 75 meters per second in the second one.

The results for the first flight condition are generally summarized as

follows:
° All gains are monotone non-decreasing/non-increasing with the
magnitude of any initial conditions
° All minimax controllers have a negative real and a stable com-
plex pair of closed loop poles
° The real pole is much closer to the origin than the complex pair

and its distance from the origin decreases with increasing magni-

tude of initial conditions



° The damping ratio and natural frequency of the complex pair

increase slightly with increasing magnitude of initial conditions,
o The range of values of the real pole Z0 is -0.0011< Z, < -0.00018,

© The range of values of § andw  of the complex poles is 0.64 < £<0. 87
and 0,071 < w_ cps < 0. 094,

° It is possible to select one fixed gain controller which gives good

performance for each initial condition.

. One initial condition, the maximum value of the initial condition on
lateral velocity considered, must be excepted for several of the
above conclusions. However, this initial condition appears to be

larger than need be considered, so its exception is not serious.

The conclusions for the second flight condition are similar:

° All gains are monotone non-decreasing/non-increasing with the

magnitude of initial conditions on the state variables.

. All minimax controllers have real poles and one of them is posi-

tive.

° The distance of the positive poles from the origin decreases with

increasing magnitude of initial conditions (0.041< z < 0.3291).

6 It is possible to select one fixed gain controller which gives good

performance for each initial condition.

o One initial condition, the maximum of the initial condition on pitch
attitude considered, must be excepted for the third and fourth con-

clusions.



THEORETICAL DEVELOPMENTS

The purpose of section 4 is to present theoretical developments applicable
to the minimax control problem with a bound on the time derivative of the
disturbance. The extremal inputs may be thought of as worst disturbances
to the system and the desired result of this study is a means of character-
izing such inputs. The discussion is restricted to an oscillator so that
explicit results are achieved. The oscillator is general, however, in the
sense that extremal inputs may have an arbitrary number of segments on
which the input is at its extreme. The theoretical development presented
for the oscillator can be generalized. The results of such a generalization
are presented in section 5. The discussion of the theory associated with the
oscillator indicates the relationship between the necessary conditions for
extremal inputs obtained by Gamkrelidze, Bryson, Denham and Dreyfus,
and Russell and Schmaedeke, and the sufficient conditions obtained by
Russell. The necessary conditions of Russell and Schmaedeke are shown
to be sufficient, These conditions are used to determine general explicit

formulas for extremal inputs.

COMPUTATIONAL ALGORITHMS

The purpose of section 5 is to develop computational algorithms which may
be used to determine extremal inputs for general linear stationary systems.
Necessary and sufficient conditions for extremal inputs are presented. A
computational algorithm is formulated based on these conditions. Also a
linear programming formulation of an approximation to the problem is given,
Results of a computer program developed from this last formulation are

presented for an example,



SECTION 2

MINIMUM WIND EFFECT CONTROL OF A SATURN V
LAUNCH VEHICLE WITH NON-ZERO INITIAL CONDITIONS

A natural criterion for Iaunch booster control is the minimum wind effect
criterion, Small errors in the system response do not degrade performance,
Hence, there is no reason for saying that control performance is not optimum
if the controller permits small errors. The major concern is the maximum
value that error components attain over the entire launch trajectory. Hence,
a desirable control criterion is one that rates controllers (in terms of a
performance index) according to their capabilities for holding the maximum

normalized error component to a minimum over the launch interval,

The synthesis of such a controller presents a formidable task., First, it
must be assumed that the launch vehicle can be adequately described over
the portion of the launch trajectory of interest by a set of linear, constant-
coefficient differential equations. A second and less restrictive assumption
is that the controller is linear fixed-gain, Further, it is assumed that the
wind disturbance is bounded by a known maximum speed, Under these
assumptions, a minimum wind effect controller is synthesized for a Saturn V

launch vehicle with non-zero initial conditions.

Given the launch vehicle data for the maximum dynamic pressure flight
condition, a controller is synthesized which minimizes maximum weighted
error components over a fixed time interval with worst disturbances

within a given class of bounded amplitude disturbances and a specified vehicle
initial condition. The resulting controller is a linear, fixed-gain feedback

controller whose optimal gains are a function of vehicle initial conditions.

The linear representation of the longitudinal rigid-body body equations of

motion of a Saturn V launch booster is chosen to illustrate the synthesis



technique of a minimum wind-effect controller for a linear stationary system
with non-zero initial conditions and amplitude bounded disturbances. The

vehicle data is that for the maximum dynamic pressure flight condition,

The synthesis procedure selects the controller gains such that a specified
performance index will be minimized for a given disturbance and vehicle
initial condition. This resuilts in the need to integrate a system of first-
order, piecewise linear, autonomous, ordinary differential equations. The
computation may be readily accomplished with the use of either an analog or
digital computer,

M-
11

numerical results indicate that the optimal gains (which minimize
the performance index) are a function of the vehicle initial conditions.
Furthermore, the vehicle has an unstable closed-loop pole for certain
optimal gains., Having determined the optimal gains for a given vehicle
initial condition, a linear fixed-gain controller which minimizes the per-

formance index for the specified initial condition is determined.

SYSTEM REPRESENTATION

To illustrate the synthesis of a minimum wind effect controller for a

linear stationary system with non-zero initial conditions and amplitude
bounded disturbances, a linear representation of the longitudinal rigid body
equations of motion of a Saturn V launch vehicle is considered (reference 1),

The assumed equations of motion are:

%= -Cla- CyB
z = va+ ‘}’2¢+‘)’3B (1)
a= ¢+ (v, - z)/v



The control equation is:

B +B = K, {b+K,8+[K CiT-CiK (Cyp-Cglla

171~ ¢
+[K1‘y3 - CyT- CyK, (Cyy - CG)] B}

Introducing x4y = ¢ (attitude angle); Xy = ¢ (attitude rate); Xg = z (displacement
rate of center of gravity); and Xy = B (gimbal motor defection angle) yields the

following set of closed loop equations:

T 1071 1.7
x, o 1 0 o x, 0
Xq -C, 0 Cl/v -C, Xq —Cl/v
- + gt (2)
xg | Y1 T Y 0 -¥y/v vg X3 Yolv
Xy ky kg kg Kk Xy kg
where:

k, = (KS/T) {K2 + K - Cy [T+ K, (Cy - Cx) 13

171

ko = Kg/T
(3)

o
1}

3 (-Kg/1v) {Kl‘yl - C, [r+ K, (Cpy - Cg) 1l

=
|

4 = B3 [Ky¥g- CuT - CoRy(Cpp - Co) - 1d/7



Equivalently (2) may be written as:

AQ

X = X+CRg(t)

The open loop set of equations is:

_ 1 -
' 0 1 0 0 X, 0 0
i i
X, -Cy 0 C,/v -C, Xq 0 -Cy/v
- + u+ g(t)
Xg ‘yl + Y5 0 —'yl/v Y3 Xg 0 ‘}’l/v
Xy 0 0 0 0 X4 1 0
B - _ I 4 L J L -
where:
u = klxl + k2x2 + k3x3 tkyx, - L g(t)

The four real parameters kl’ K9, kg, and k4 may be thought of as pseudo-

gains. However, these parameters must be constrained so that the solutions

(of the defining equations for kl’ k2, k3, k4) for the gains, time constant and

accelerometer location are physically realizable. In order for the time con-

stant 7 to be real it is necessary that:

2
[(k4C1 + vkaCy) (Cpp - Cg) - kg¥y - vk373]

- 4ky (Cy¥5 - Cy¥) [cl (Cym - Ca) - y1]3 0 (5)

(4)




Denoting by b8 and b9 the minimum and maximum values respectively of
CM - CG such that CM represents an accelerometer location on the vehicle,

it is possible to express the constraint on the k's in the form:
E(k) N [bg, bgl# ¢
where:

E(k) = {x: [(1‘:401 + vkgaCy)A - k¥, - vkgYg 12

1

This constraint is just a mathematical way of stating that the k's must be
chosen so that there is some accelerometer location on the vehicle for which
the corresponding value of T is real, - For a set of acceptable gains, the con-

trol law is given by:

The data used represents that for a typical Saturn class launch booster,
Units for the data are meters, radians, and seconds, T = 10, C1 = -0,2165,
C2 = 1,1381, Yt Yy = 27. 66, yl/v = 0.0133, Yy = 17.65, v = 507,

The control criterion (performance index) is defined as:

C(u) = max Ci(u)
0<i<s
where:
Ci(u) = max max | at - x(t, u, g) |
0<t< T g€G

10



for each u in the class U, with x(t, u, g) denoting the solution of (2) and at
representing a non-zero constant weighting vector fori=1, 2,...., S
where S is a positive integer. A controller is said to be optimal in case

it is an element of U which minimizes C(u).

IFor the present problem, it is possible to write the performance index

(reference 2) as:

Ciw = max { N |+ pt)] (7)
t€lo, T]

The functions A (t) and yi(t) may be obtained as solutions of sets of piece-

wise linear autonomous differential equations.

The term )\i(t) may be expressed as:

. AQt

A1) = a - e X (8)
which can be obtained from the solution of the linear system X = AQx with
x(0) = x°, For the example being considered, this results in the system of

equations given by:

T B 17 7 [ ]

X 0 1 0 0 x4 ¢o

X -C, 0 Cl/v -C, X, 2
= , X° = (9)

X3 Yit¥e 0 RSTASEN X3 25

X4 kg kg kg ky Xy By

I i 4 L . L

11



Forming the inner product d - e X, yields:
_ 41 1/ 1. 1
>‘1' d1¢+d2¢+d3z+d43
_ 42 2 2 2
>x2— d1¢+d2¢+d32+d4B
(10)
_ 43 3 3 3
Ag = d] 8+d, ¢+d3z+d, B
_ 4 4 4 4
>\4- d1¢+d2¢+d3z+d46
If the d§ 2re chosen such that:
i o .
Jdi = 0ifj # i
ldi. = difjei
J
Then the system of equations given by (10) reduces to:
_ 1
¢ = Al/d
A WE
(11)
z = X /d3
3
4
B = 2,/d

If ¢O= Ebo: 'zoz Bo=0, the solution of (9) is identically zero. Consequently,
the i)\i |'s indicate the contribution to the cost created when the initial condi-

tions for the vehicle are non-zero with no disturbance present,

12



The second function [.Li(t) may be expressed as:

An(t-T7)
e 9 Cg 7,(ndT

-
4

t
o= (o

J

0
with ‘yi(t) given by:
A (-
Q)

Y(t) = (Vo) ., sen [d - e

which represents a worst disturbance condition.

(13) into (12) yields:

(12)

(13)

Substitution of expression

T
_ i Q
My (Vo) max j- ld e Cglar (14)
0
To simplify, notation (Vw)max will be replaced by VW in all that follows. The

term e Q"-CR may be determined by solving the set of differential equations:

—z.lw [ o 1 0 0

24 -C, 0o C,/v -G,

2'3 VY2 0 /v 7

LZ'4_ i Ky ky kg Koo ||

,» 2(0) =

-

s
—Cl/v

Vl/v

(15)

The pfs may be thought of as representing the costs induced by the disturbance

for zero vehicle initial conditions,

13
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ANALOG COMPUTATION

The computation necessary to determine the performance index, C(u), is
readily accomplished using an analog computer. For purposes of scaling,
the system of equations given by (4) was rewritten as:

L D - _ -
¥y 0 1 0 0 ¥y 0
Yo -Cy 0 ¢ -G Yo -Cy a(t)
= + — 1
(¥+75) ¥, Yg v (16)
v v v
Vel |¥1 kg kgv k4 Y4 “kgv
I I 4 L 4 L ,
where:

Yy = % ¥y ®, y3 = z/v,andy, = B.

This was necessitated by the small numerical value of k3 (approximately
0.00049) which was optimal, The product k3v is approximately equal to
-0, 249 to which the analog potentiometers may be readily adjusted.
Accordingly, equations (9 ) and (15) are modified. Since the disturbance
is normalized with respect to the vehicle velocity, v, the expression for

/Ji now becomes:
v . AT
" =_WJ Idl-eQCR|d‘T (17)
0

A
Q'

tors and the necessary summing and inverting circuits, The inner products

At
The expressions e Q x° and e R are each evaluated using four integra-



are easily formed since the following set of weighting vectors, d', is used

for this example:

1/2.35 0 0 0
0 1 0 0
1 2 3 4
d = ; d = ; d = ; d =
0 0 1/523 0
0 0 0 It 1/1.33

PRI T TO s

ected by determining the maximum value of

The weighting vectors were se

=

the transient response of each of the parameters for a similar launch
vehicle to a disturbance input and then normalizing such that d1¢max =
a¢ = a3z = a*g

m

ax max max’

The absolute values were formed using two diodes and two summing ampli-
fiers, A complete wiring diagram for the analog computer is shown in

Figure 1,

The computer is scaled such that ten volts equals one degree or one degree
per second, Since the performance index as determined from the analog
computation is in degrees as opposed to radians for the digital computation,

one must convert degrees to radians or vice versa for comparison purposes.
The primary use of the analog computer was that of observing the system

response for a given initial condition and corresponding optimal gain set,

Furthermore, it gave a convenient check of the digital computation results.

15
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R 8v

cR%= v

Figure 1. Analog Computation of the Performance Index C(U) for
Nonzero Initial Conditions



DIGITAL COMPUTATION

A program was written for the Honeywell H-1800 digital computer to evaluate
C(u) by solving the systems of equations described by (9 ), (12), and (15).
Initially it was assumed that the set of minimizing gains for non-zero initial
conditions would be close to the optimal gains for zero initial conditions.
Consequently, the refined grid of Example 3 of Reference 1 was chosen to
minimize C(u) for non-zero initial conditions. This gain grid consisted of

the following set of gains (Gain Grid II):

e
I

1 0.401765, 0.602647, 0, 802647

k2 = 0,471405, 0.942809, 1.414214
k3 = -0,00049105, -0.00036828
k4 = -0,353553, -0.707107, -1.060066

To more closely observe the dependence of the gains on the vehicle initial

conditions, another gain grid refinement was made (Gain Grid III):

=
]

0. 401765, 0.502207, 0.602647

e
1

9 1. 178511, 1.414214, 1.6499186

~
0

-0, 00049105, -0.00042977

k

4 -0. 530330, -0.707107, -0, 883586

All possible combinations of gains were taken resulting in a total of 54 gain
sets, These were conveniently numbered 1 through 54 and consequently any
reference to a particular gain set number is only significant with respect to

the manner in which the combinations were ordered.

17



The performance index was iminimized for the following set of non-zero initial

conditions:
¢, = 1, 2, 3, and 4 deg
6, = 0.5, 1.0, 1.5and 2.0 deg/sec
z, = 1, 2, 3, and 4 m/sec
B, = 0.5, 1.0, 1.5, and 2.0 deg

SIMULATION RESULTS

The numerical results presented herein will be those obtained using Gain
Grid IIT and a disturbance magnitude, Vi of 75 m/sec. Table 1 identifies
the gains which minimized C(u) for the set of initial conditions used.

Table 2 lists the initial conditions and the corresponding optimal gains.
Table 3 shows the location of the controlled vehicle poles, Approximately
16 minutes of digital computer time was required to determine the optimal
galns for the set of initial cond1t10ns considered. For small values of

¢, o’ B and all values of z considered, the optimal gain set is equal to

o
the optlmal gain set for zero 1n1t1a1 conditions.

The change in gains with a change of initial conditions is shown in Figure 2

which indicates that the gains are functions of the initial conditions.

If the initial conditions are sufficiently small, then [ >> | )ki l and the
optimal gain set will be equal to the optimal gains for zero initial conditions.
Also if Vw is sufficiently large, the optimal gains will be independent of
initial conditions. Initially the k's were chosen such that lkil < Mi' For all
the optimal gain sets, the gain kg is at its maximum value. Consequently a
smaller value of C(u) may have been obtained had the bounds on k3 been

increased in magnitude.

18



Table 1.

Identifica

tion of Optimal Gains

- kl_ k2 k3 k4
Gain 8 0.401765 1.414214 -0,00048105 -0, 707107
Gain 14 0. 401765 1.7 649916 -0, 00049105 -0. 707107
Gain 31 0.502207 1. 64%99 16 -0,00049105 -0.530330
Gain 49 0.602647 1.649916 -0,00049105 -0.530330

C(u) in Radians

for X* = 0
Gain 8 0.121686
Gain 14 0.124523
Gain 31 0.134310
Gain 49 0, 142547
V. = 75 m/secand T = 10 sec

w
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Table 2, Optimal Gain and Minimum Cost for
Given Set of Initial Conditions
Minimizing | Cost C(u)
X1 = _¢o Xg = ¢0 X4 = Gain in Radians
1.0° 8 0.164166
2,0° 49 0.194999
3.0° 49 0.221071
4, 0° 49 0.250300
0.5° [ sec 8 0, 133654
1.0° /sec 8 0.145514
1. 5° [/ sec 31 0.150867
2.0° /sec 31 0. 158254
1 m/sec 8 0.137765
2 m/sec 8 0.158381
3 m/sec 8 0. 169858
4 m/sec 8 0, 185952
0.5° 8 0.137249
1.0° 14 0. 152562
1.5° 31 0. 164756
2.0° 31 0.174840
Min C(u) 0.121686 for X* = 0and V= 75 m/sec

Corresponding Gain Set is Gain 8.




Table 3.

Location of Controlled Vehicle Poles

Root Real Part Imaginary Part
e —_e =
Gain 8 1 0. 005408 0. 000000
2 -0.273208 0. 000000
3 -0.226303 1.113617 £ = 0.898 cps
4 0. 226303 -1, 113617 = 0.201
Gain 14 1 0.005308 0. 000000
2 -0.229022 0. 000000
3 -0.248347 1.227910 £ = 0.815 cps
4 0. 248347 -1.227910 €= 0.159
Gain 31 1 0.002385 " 0. 000000
2 -0.315827 0. 000000
3 -0. 115094 1.261882 £ = 0.791 cps
4 -0, 115094 -1.261882 €= 0.092
Gain 49 1 0.001738 0. 000000
2 -0. 380567 0. 000000
3 0. 080662 1.268127 £ = 0.780 eps
4 -0. 080662 -1. 268127 €= 0.063
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The responses of the optimally controlled system to a worst disturbance of
maximum amplitude of 75 m/sec with the initial conditions previously given
are shown in Figures 3 through 11. Observation of the analog traces indicates
that the vehicle parameter z is the major contributor to the increase in the
performance index for non-zero initial conditions over zero initial condi-

tions. In fact, without exception

C(u) = max C.(u) = Cq
1<i<q4  *t
where:
C max {[..L + idaoi}
= z
3 telo, 101 3

The analog traces of the A's are proportional to the transient response of the
vehicle with non-zero initial conditions as given by (8). For the problem at
hand:

e
1]

2.35)\1
8 = A

575)\3

N .
I

w
I

1. 33A4

Observation of the Ci traces for large initial conditions (i.e., Figure 4)
shows that the max {y.i + Idlx1 I} may occur before T equals 10 seconds

because of the oscillatory component of the performance index.
The closed loop pole positions are presented in Table 3. One of the two

real roots is unstable except for the optimal gain corresponding to ¢o equals
4 degrees, Over the range of ¢o, the frequency and damping ratio of the
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complex pair of roots decreased by 13. 2 percent and 78 percent respectively.

For the range of $o and BO the frequency and damping ratio decreased by
11, 9 percent and 54 percent respectively. The change in frequency and

damping ratio is also observable from the analog traces.

CONCLUSIONS

The syntheésis technique developed for minimum wind effect control of a
linear stationary system with non-zero initial conditions and amplitude
bounded disturbances was found to be feasible. A linear feedback controller
for the launch vehicle was determined in a systematic fashion and provided
adequate control of the vehicle. This approach to launch vehicle controller

synthesis has much merit in terms of development time and cost.
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SECTION 3

THE EFFECT OF NON-ZERO INITIAL CONDITIONS
ON SELECTION OF MINIMAX CONTROLLERS

Results of the effect of the magnitude of non-zero initial conditions on
selection of minimax controllers for a piecewise constant approximation
of a large launch booster are given for two time intervals (flight conditions)

which occur during the first 84 seconds of flight,.

This section is a supplement to Honeywell Report 12003-FTR1. That report
contains the results of applying optimal control theory to selection of linear,
fixed-gain controllers foreach interval with zero initial conditions on each
interval. It also contains a description of the mathematical approxi-
mation of the launch booster and the various ﬂigﬁt conditions.

Good zero-nitial-condition controllers for intervals 13 and I5 were selected
from Report 12003-FTR1 as a starting point. The techniques and computa-
tions described in Report 12003-FTR1 were used to arrive at the results

given in this report.

PROBLEM SUMMARY

Choice of Intervals

Interval 13 was chosen for study because its good zero-initial-condition con-~
troller (hereafter called (X° = 0O)-controllers) were of comparatively high
gain and responses (hence also cost items) were expected to be more sensi-
tive to gain change and initial conditions (hereafter called I. C.) than in an

interval with lower gain controllers, Interval 15 was chosen because it
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contained the event of Mach 1 and because the good (X* = 0)-controllers had

one large positive eigenvalue,

Choice of Initial Conditions (I. C. 's) and Gains

36

It was decided to study the effect of I. C. 's on each state variable individually
to eliminate the possibility of I. C.'s on two or more state variables cancel-

ling their individual effects,

It is known from the results presented in Appendix A of Report 12003-FTR1
that non-zero I. C. 's on the state variables increase the cost of control for
a given controller, From results in Appendix A of Report 12003-PR6, it is
known that the best controller of a given set of controllers is dependent on

the magnitude of the I, C.'s,

Two problems involved in extending previous results and techniques to non-

zero I, C, s are:

A) The L C, 's at the start of 13 or 15 should have magnitudes which
are typical of an actual response of a reasonably well-controlled
vehicle subjected to typical (not maximal) disturbances in the

earlier portions of a flight; and

B) The gain grid should have increments consistent with the size of
the I. C. !s,

The details of picking values for I. C. 's with the properties described in (A)
will be described in MAGNITUDE OF INITIAL CONDITIONS. The problem

described in (B) can be clarified by an example. As stated above, it is
known that the best controller of the set represented by a given gain grid

depends on the magnitude of the I.C. 's.



Assume that the grid contains its best (X° = 0) - controller somewhere near
the midpoint of the grid, and that typical non-zero I. C, 's (as described in
(A) are used. If the gain grid is too coarse, the same controller of that set
will remain the best controller for the chosen I.C,'s, If the gain grid is too
fine, the best controllers with non-zero I. C. 's will be on the boundary of

the gain grid. In either of these extreme cases, very little is learned about

how much the o

110V AL

One way to have quantitative results would be to have:

® Several values for the I.C, on a given state variable which covered

a typical range,

e A gain grid with increments such that to each different value of a
given I, C, would correspond a different best controller in the

grid;

o The best controller systematically related to the magnitude of the
1.C.

The following results presented in Section 3 substantially have these properties.

RESULTS OF MINIMAX COMPUTATIONS

Initial gain grids were chosen which contained the controllers in 13 and I5
specified in the right half of Figure 12, Report 12003-FTR1, The grid

sizes had increments of about ten percent except that the K1 increment in

15 was about 30 percent. In only three iterations of minimax computations

for each interval, the gain grids and sets of I.C, 's listed in Tables 3-1 and 3-6
were attained, The results will be considered from the points of view of
control costs, eigenvalues (stability), and controller gains, It will be seen
that the non-zero 1. C, 's lead to controllers of slightly higher cost, and

more stability., Both of these results were anticipated.
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Table

3-1.

Gain Grid and Initial Conditions for Interval I3

Gain 1 2 3 4 5
K, 0.50 | 0.55 | 0.60 | 0.65 | 0.70
K, 1.4 1.6 1,8 2.0 2.2
K, -0,13 [-0.12 [-0.11 | -0.10 | -0.09
Initial Conditions
Amount | #(0) rad |9 (0) rad/sec| Z(0) m/sec
X = 0 o 0 0
0.1 0.001745 0 0
¢ deg 0.2 0.003490 0 0
0.4 0. 006980 0 0
0.02 0 0. 000349 0
¢ deg/sec 0.04 0 0.000698 0
0.08 0 0.001396 0
0. 172285 0 0.172285
z m/sec 0. 344570 0 0. 344570
0. 698140 0 0 0. 698140
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Id entification of Controllers

For convenient reference to controllers in the following discussion, a given
controller in Tables 3-1 and 3-6 will be identified by the index values of its
three gains, rather than by the gain values themselves, For example, in
interval 13 (Table 3-1), the controller with gains (Kl’ Kz, K3) = (0,50, 1,4,
-0, 09) will be designated as K(115). This happened to be the best controller
for zero I.C, It will be noted that all three of its values lie on the boundary
of the control box (hence, this controller is at a corner of the box), rather
than on the interior as was postulated on page 37. This presents no
problem since it was established in arriving at the gain grid for I3 that the
best controllers for non-zero I. C, 's would lie toward the interior of the
gain box. Similar comments apply for 15 (Table 3-6), where the best

(X®* = 0)-controller (which was K(154)) was on a face of the gain box,

Costs, Gain Changes, and Closed Loop Poles

Results of minimax computations for the various I. C. 's are given for 13

and I5 in Tables 3-2 and 3-7 respectively. FEach table gives the costs and
closed-loop poles of the three best controllers in the grids for ten I, C, 's,
The results for each interval will be discussed separately and supplementary

tables and graphs will be given to illustrate various conclusions.

Interval I3

Some facts and general conclusions from Table 3-2 are as follows:

° Only 13 different controllers (out of 30 possible) are represented
in Table 3-2, Of these, only eight are needed to provide the two

lowest cost controllers for ten 1. C. !s,



Table 3-2. Three Best Controllers, Their Costs, and Closed Loop Poles
for Ten Initial Conditions in Interval 13
Controllers { and @, of
and Costs Closed Loop Poles Complex Poles
CKpLK LK) =
m' e}
ILC. C(1, m, n.) Real Complex Pair e w
Cg(115) = 0.04347 -0.00110 |-0.2800 +i. 0,3278( 0.6496 | 0.4311
X = 0 Cg(254) = 0.04424 | -0.00018 |-0.4367 %i. 0,1381]0.9535 | 0.4580
Cg(154) = 0.04446 0,00111 |-0,4374 +i- 0,1146{ 0.9997 | 0. 4375
To] = C,(115) = 0.04363 || -0.00110 |-0.2800 i - 0.3278] 0.6496 | 0.4311
0.1 deg = Cg(244) = 0.04473 -0,00018 |-0.3977 £i. 0,2250( 0.8707 | 0.4570
0.001745 C4(234) = 0.04530 || -0.00018 |[-0.3587 +i- 0,2813}0.7869 | 0. 4559
|el Cg(234) = 0.04538 || -0.00018 |-0.3587 £i- 0.2813| 0.7869 | 0.4559
0.2 deg = C4(115) = 0.04598 || -0.00110 [-0.2800 +i. 0.3278] 0.6496 {0.4311
0. 00349 Cg(324) = 0.04606 -0.00127 |[-0,3192 +i- 0,3518[/0.6719 | 0. 4750
lo| = C4(224) = 0,04662 -0.00018 |-0.3197 £1i. 0.3235| 0. 7030 | 0. 4548
0.4 deg = Cg(214) = 0.04711 -0.00018 | -0,2807 £i. 0,3565( 0.6187 | 0. 4537
0.00698 C4(314) = 0.04712 -0.00128 |-0.2802 £i- 0.3824]/0.5910 | 0. 4741
lo | = Cg(115) = 0,04350 || -0.00110 |-0.2800 *i- 0,3278( 0.6496 | 0.4311
0.02 % = Cg(244) = 0.04468 | -0.00018 |-0.3977 +i- 0,2250]l 0. 8704 | 0.4570
0.000349 sec™l | C.(144) = 0.04484 0.00111 | -0.3984 +i. 0,1779[ 0.9131 | 0.4363
lo| = C.(115) = 0.04358 || -0.00110 |-0.2800 £i. 0,3278]| 0.6496 | 0,4311
0.04 2—2%: C.(244) = 0.04470 -0.00018 |-0.3977 £i. 0.22501| 0.8704 | 0, 4570
0.000698 sec™ * C(234) = 0.04528 || -0.00018 |-0.3587 +i- 0.2813] 0.7869 | 0. 4559
lo] = Cg(244) = 0.04475 -0.00018 | -0.3977 £i. 0.2250]| 0.8704 | 0, 4570
0.08 gg% = Cg(234) = 0.04533 | -0.00018 |-0.3587 *i. 0.2813| 0. 7869 | 0, 4559
0.001396 sec” * C4(115) = 0,04548 | -0.00110 |-0.2800 %i- 0.3278] 0.6496 | 0, 4311
|z | = C4(244) = 0.04485 -0.00018 | -0.3977 £i- 0.2250( 0.8704 | 0. 4570
0. 1723 C(234) = 0.04535 || -0.00018 | -0.3587 +i. 0,2813]0.7869 | 0.4559
m/sec C4(115)= 0.04555 | -0.00110 |-0.2800 +i- 0,3278]0.6496 | 0, 4311
lz]| = C4(234) = 0.04609 -0.00018 | -0.3587 £i. 0,2813 0, 7869 | 0, 4559
0. 3446 C.(224) = 0.04621 || -0.00018 |-0.3197 %i. 0,3235(0.7030 | 0.4548
m/ sec C(214) = 0.04716 -0.00018 | -0.2807 +i- 0,3565( 0,6187 ] 0, 4537
Iz = C4(542) = 0,05167 0.00018 |-0.3984 =i- 0.3300](0.7701|0,5173
0.6891 C5(532) = 0.05209 0.00018 | -0.3594 +£i. 0, 3707/ 0,6960 | 0.5163
m/sec C4(552) = 0.05212 0.00017 | -0.4374 £i- 0,2780]( 0.8439 | 0,5183
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® Foreight of teriinitial conditions, the three best controllers are

asymptotically stable.

®  Two of the three best (X° = 0)-controllers were asymptotically

stable. In earlier gain grids, the (XO = 0)- controllers always had one

positive closed loop pole; e. g., see Figure 12 of Report 12003-FTRI1.

One iteration of grid mapping resulted in the grid (Table 1) for which

results are shown here.

The increasing of I.C. 's leads to systematic changes in the minimax controller

gains. The simplest illustration is shown by looking at the progression of best

controllers as I.C. 's on the state variable ¢ progress from 0 to the maximum

value considered.

Table 3 shows the collection.

Table 3-3. BestControllers for I C.'s on ¢

| é)"[ deg Best Controller Closed Loop Poles CParid W, of Complex
sec and Cost oles
Real Complex Pair e w
0 C5(115) =.0434"7 -. 00110 -. 2800 +1i, 3278 . 6496 .4311
.02 C(115) =. 04350 " " " "
. 04 C_(115) =.04358 " " " "
.08 C5(244) =.04475 -. 00018 -.3977 £i.2250 .8707 .4570

It is seen that as |9 | increases, the gain index (hence the gain) is:
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° Monotone increasing * on K1

° Monotone increasing* on K2

° Monotone decreasing ™ on K3

With minor modification, the same result is true for I.C.'s on ¢ and Z The
modification in the case of I.C. 's on ‘Z is that one should choose the second best
controller for the smallest non-zero I.C. in order for all gains to be monotone
with iio |. The cost penalty paid for this substitution is only about one percent.

Table 4 illustrates the gain changes as I.Zo | increases.

Table 3-4. BestControllers for I.C.'s on Z

. m Best Controller Closed Loop Poles { and w of Complex
| Zzot —— and Cost Poles
sec - R
Real Complex Pair ' wn
0 C5(115) =.,04347 -.00110|-.2800 +1,3278 . 6496 .4311
.1723 **C3(234) =,04535 -.000181-.3587 £1i,2813 . 7869 .4559
"

. 3446 C,4(234) =. 04609 " " "
. 6891 C3(542) =,05167 .00018 {-.3984 £1i,3300 L7701 . 5173

The same situation is true for I.C.'s on ¢.

* More accurate terminology is monotone non-increasing/non-decreasing. The
simplification used above is common.

% Second best controller for this I.C.
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Table 3-5. Best Controllers for I.C.'s on ¢
Best Controller Closed Loop Poles Cand w of Complex
| ¢° ldeg and Cost B Pair
Real Complex 'y wn

0 C5(115) = 0. 04347 || -0.00110 -0.2800+ i 0.3278)] 0.6496 | 0.4311
0.1 C5(115) = 0.04363 || -0.00110 -0.2800+1 0.3278|| 0.6496 | 0.4311
0.2 *C5(115) = 0. 04538 || -0.00110 -0.2800+1i 0.3278]| 0.6496 | 0.4311
0.4 C5(224) = 0. 04662 -0. 00018 -0.3197 £1 0.3235] 0.70301{ 0.4548

* Second best controller for this I. C.

Comparison of Tables 3-3, 3-~4, and 3-5 shows that all minimax gains are

monotone with increasing absolute values of I, C.'s, and also that each

minimax gain is monotone in the same direction with every I.C.; i.e.,

K1 is monotone increasing with II. C. l,

K2 is monotone increasing with |I. C. |,

K, is monotone decreasing with |1.c. |

The total increases of costs over the ranges of 1. C. 's are about 2. 9 percent

in Table 3-3, 18 percent in Table 3-4, (8.1 percent in Table 3-4 if the largest

value of Z°is omitted) and 7.4 percent in Table 3-5.

As far as closed loop poles are concerned the indication from Table 3-3, 3-4,

and 3-5 is that the real pole moves from =0.00110 to the right as II. C.i increases.

It remains negative except for the largest value of |Z°| . The behavior of the

complex poles is most easily interpreted from the damping ratio ¢ and natural
frequency w - It is seen that, with the largest value of |Z-° | again excepted,

both £ and w, increase with l1. c. |
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The uniform behavior of gains, real poles, damping ratio, and natural
frequency withincreases in magnitude of any of the initial conditions,and the
small variation in control costs with initial conditions suggest the possibility
of picking one fixed-gain controller for I3 which is good for a large number
of non-zero I. C.'s. A first candidate might be the (X° = o) controller itself
(K(115)), since it occurs more often in Table 3-2 than any other (seven times).
But it turns out that this controller gives some rather high costs for the
largest values of |@° | and |Z° |. A petter compromise controller is K(234)
(which occurs six times in Table 3-2). Foreveryl.C. considered, the costs
for K(234) exceed those of K(115) for X° = o by less than 26 percent, less
than 12 percent if the largest value of |Z° | is excepted, and less than 6 per-

cent if the largest values of both |Z° | and | @° | are excepted.
Thus, for interval 13, it has been found that, for the gain grid considered:

(1) All gains are monotone non-decreasing/non-increasing with the

magnitude of I. C. on any state variable;

(2) All minimax controllers have a negative real and a stable complex

pair of closed loop poles;

(3) The real pole is much closer to the origin than the complex pair
and its distance from the origin decreases with increasing magnitude
of I.C. 's (-0. 0011 < Z,2-0. 00018);

(4) The damping ratio and natural frequency of the complex pair increase
slightly with increasing magnitude of I. C. 's (0. 64 < £ < 0.87 and
0.43 < w rad/sec < 0.57)

(5) It is possible to select one fixed gain controller which gives good

performance for each I. C.;

(6) One I.C., the maximum value of |Z° | considered, must be excepted
for conclusions (2), (3), (4), and (5). It is shown in MAGNITUDE OF
INITIAL CONDITIONS that this exception is probably not serious
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Since the only exceptions concerned Z°, we may also conclude that the
selection of minimax controllers for bounded winds is not particularly
sensitive to I. C. 's on ¢ and ¢ in interval 13- This bears the qualification

that a single compromise controller which is to be used for all I. C. 's will
give better performance if the effect of I. C. 's on selection of minimax
controllers has been considered. This qualification is apparently not a severe
one, since in this example where good (X° = o) controllers were known to
begin with, only three iterations of minimax computations were required to

arrive at the results presented.

Interval I5

The selection of minimax controllers in interval I5 was more strongly in-
fluenced by I. C. 's than was the case in interval 13- This is shown by the

fact that 22 different controllers are represented in Table 3-7, while only 13
occurred in the corresponding table for interval I (Table 3-2). Nevertheless
it will be seen that the conclusions are very similar for both intervals.

Table 3-8 is extracted from Table 3-7, and serves to illustrate the conclusions.

Inspection of Table 3-8 shows that, again, all gain indices (hence gains) are
monotone with increasing |I. C.l. On all three state variables, as |I. C. |

increases,

(1) K, is monotone increasing,
(2) K2 is monotone decreasing, and

(3) K3 is monotone decreasing.

Again, the cost penalty for substituting second best controllers in two spots was

well below one percent.
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Table 3-6.

Gain Grid and Initial Conditions for Interval 15

\ Gain
GaiﬁWdex 1 2 4 5
Kl ~-1.2 -0.9 -0.6 -0.3 0
K2 1.7 2.0 2.3 2.6 2.9
K3 -0. 070 -0. 065 -0. 060 -0. 0565 -0. 050
Initial Conditions
Amount # (o) rad ¢ (o) rad/sec z (o) m/sec
| X° = o 0 0 0
0.2 0. 00349 0 0
¢ deg 0.4 0. 00698 0 0
0.8 0. 01396 0 0
: 0. (;4 0 0. 000698 0
¢ deg/sec 0. 08 0 0. 001396 0
0. 16 0 0. 002792 0
- 0. 30878657 E 0 0 0. 308865
Z m/sec 0.617730 0 0 0.617730
1. 23546 0 0 1. 23546
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Table 3-7. Three Best Controllers, Their Costs, and Closed Loop Poles
for Ten Initial Conditions in Interval I

Controllers and Costs
Cl{Ky, K_,K)=
I '{3(,&1{%) n Closed Loop Poles Comments
Cg (154) = 0.03909 0.3291 -0.0186 -1.5457
X° =0 C, (235) = 0.03914 0.3021 -0.0191 -1.2661
C, (155) = 0.03925 0.3288 -0.0183 -1.5457
$=0.2 deg = Cg (513) = 0.04352 0.0399 -0.0570 -0. 7142
0.00349 rad Cy (514) = 0.04389 0.0379 -0.0548 -0.7144
Cg (414) = 0.04400 0.1559 -0.0259 -0.8613
$=0.4deg = C, £512) = 0.04496 0.0418 -0.0592 -0.7141 C; (512) = Cg(512)
0. 00698 rad Cy4 (521) = 0.04568 0.0399 -0.0568 -0.8407
Cg (51D) = 0.04612 0.0436 -0.0613 -0.7140
$=0.8 deg = Cy4 (511) = 0.05366 0.0436 -0.0613 -0.7140
0.01396 rad C, (512) = 0.05499 0.0418 -0.0592 -0.7141
Cy4 (521) = 0.05570 0.0399 -0.0568 -0. 8407
¢=0.04 %8 - C, (245) = 0.04071 0.2796 -0.0191 -1.3696 Choose Cg (244) to
sec
0.000698 sec™ C5 (244) = 0.04073 0.2798 -0.0194 -1.3696 make gains monotone
C, (335) = 0.04076 0.2184 -0.0206 -1.1809 with &
$-0.08 %8 . C, (344) = 0.04182 0.2009 -0.0211 -1.2891
sec
0.001396 sec ™’ C, (415) = 0.04186 0.1552 -0.0249 -0.8613
Cg (325) = 0.04189 0.2392 -0.0207 -1.0757
- -t e —
b-0.1698 . C, (433) = 0.04340 0.1267 -0.0263 -1.0837
sec
0.002792 sec” ! Ty (414) = 0.04346 0.1559 -0.0259 -0.8613
Cy (424) = 0.04347 0.1394 .| -o0.0257 -0.9710
Z = 0.308865 C, (244) = 0.04067 0.2798 -0.0194 -1. 3696
m Cj (315) = 0.04067 0.2636 -0.0207 -0.9740
sec
Cq (335) = 0.04072 0.2184 -0.0206 -1.1808
Z = 0.61773 C, (415) = 0.04198 0.1552 -0.0249 ~0.8613 Choose Cq (324) to
m C3 (324) = 0.04206 0.2396 -0.0212 -1.0757 make gains monotone
sec C, (334) = 0.04216 0.2188 -0.0211 -1.1809 with Z°
Z = 1.23546 Cg (512) = 0.04482 0.0418 -0.0592 -0. 7141
m Cj4 (422) = 0.04497 0.1409 -0.0274 -0.9710
sec Cq (413) = 04530 0. 1566 -0.0268 -0.8612




Table 3-8. Extract of Table 3-7
I.C.

foe | [3e | [z |

deg deg/sec m/sec Best Controller and Cost Closed Loop Poles

0 0 0 C3 (154) = 0.03909 0. 3291 -0.0186 -1.5457
0.2 0 0 C5 (513) = 0.04352 0.0399 -0.0570 -0. 7142
0.4 0 0 C3 (512) = 0.04496 0.0418 -0.0592 -0.7141
0.8 0 0 C3 (511) = 0.05366 0.0436 -0.0613 -0.7140
0 0 0 C3 (154) = 0.03909 0. 3291 -0.0186 -1. 5459
0 0.04 0 *C5 (244) = 0.04073 0.2798 -0.0194 -1.3696
0 0.08 0 C5 (344) = 0.04182 0.2009 -0.0211 -1.2891
0 0.16 0 C5 (433) = 0.04340 0.1267 -0.0263 -1.0837
0 0 0 C3 (154) = 0.03909 0. 3291 -0.0186 -1.5457
0 0 0.308865 C5 (244) = 0.04067 0.2798 -0.0194 -1.3696
0 0 0.61773 *C3 (324) = 0.04026 0.2396 -0.0212 -1.0757
0 0 1.23546 C5 (512) = 0.04482 0.0418 -0.0592 -0.7141

*Second Best Controller for this I. C.
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The locations of all closed loop poles for the minimax controller in Table 3-8
follow a definite pattern. InI.C.'s on ¢ and Z, a given pole continues to
move in the same direction as lI. C. I increases. In particular, the positive
pole moves toward the origin as I.c. |increases. For I.C.'s on ¢, even
the first non-zero I. C. results in minimax controllers whose poles are
substantially different from those of the (X° = 0)-controller. Of most
interest is the positive pole, which is only about one-tenth as far from the
origin for non-zero I.C.'s as when X° = 0. And when ¢° # 0, all pole

locations are quite similar.

The total cost increases over the ranges of the I. C. 's in Table 3-8 are .37
percent on |4° | (15 percent if the largest value of |¢°|is omitted), 11 per-
cent on Iqs" |, and 14. 7 percent on I z° I The most popular controller in
Table 3-7is K(512). It is therefore a candidate to be considered as a com-
promise controller for all the I.C. 's. It looks surprisingly good: the costs
for K(512) exceed the (X° = 0) -cost of K(154) by about 41 percent; but if the
largest value of | I is excepted, the cost excess is only 15 percent. These
values are about the same as the cost increases for the minimax controllers

in the grid over the ranges of the I. C. 's.
Thus for interval I5 it has been found that, for the gain grid considered:

(1) All gains are monotone non-decreasing/non-increasing with the

magnitude of I. C. 's on the state variables;
(2) All minimax controllers have real poles and one of them is positive;

(3) The distance of the positive pole from the origin decreases with
increasing magnitude of I. C. 's (0. 0418 < Zo < 0.3291)

(4) It is possible to select one fixed gain controller which gives good

performance for each initial condition.

(5) One initial condition, the maximum of | g°l considered, must be

excepted for conclusions (3) and (4).
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MAGNITUDE OF INITIAL CONDITIONS

It remains to be shown that values of I. C. 's chosen are, in some sense,
"reasonable". The initial values of I. C. 's were chosen from preéviously
computed cost data for X° = 0 controllers.

The natural output of the minimax computations is a set of cost items, each
of which is proportional to the maximum amplitude which a cost variable can
achieve with a bang-bang wind disturbance. Furthermore, the switching
times are not in general the same for two different cost variables. Thus, a
set of cost items (for a given controller) does not represent the terminal
values of a response, but rather the maximum values the cost variables can

achieve at any time during a set of responses of a given time duration.

Maximal amplitudes of individual cost variables were readily available but
response data was not, so it was decided to choose initial values of state
variables* for I3 amd I5 equal to one-third their maximum amplitudes with
zero initial conditions for I2 and I4, respectively. The rationale was that
maximal responses correspond loosely to "three-sigma™ responses and that
one third of these amounts would be more "typical' of state variable ampli-

tudes at the end of 12 and I,, hence at the beginning of 13 and I5.

A second estimate of suitable I. C. values for @ and z was made from response

curves of a similar vehicle subjected to five different synthetic wind profiles.
These data were supplied by personnel at the George C. Marshall Space
Flight Center. The cross-wind velocity in each profile built up at a certain
rate from zero to a specified maximum value which occurred at times

t = 48, 56, 64, 72, and 80 seconds respectively. A gust with an altitude
depth of.3 km was superimposed on each profile at the instant it reached its
specified maximum value. This maximum value corresponded to an attack

angle due to wind o, (= lVIE) of about 10. 3 degrees.

* The state variables are a subset of the cost variables
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The left half of Table 3-9 shows the response amplitude of @ and Z from the
M.S.F.C. data att = 36 and t = 60 (the beginning times for 13 and 15,
respectively). The middle section shows the values obtained from minimax

cost information, and the right section shows the values actually used.

The top half of the table shows that, for 13, the range of chosgn initial values
for ¢' is about right. However, the largest initial value for Z substantially
exceeds that estimated either from responses or cost data. This fact has
the effect of strengthening previous conclusions for interval 13, since it was
this largest value of |Z° | which required the several exceptions to that list

of conclusions.

In interval 15 (bottom half of Table 3-9), the chosen range of I.C.'s on Z is
ample. The chosen range of I. C.'s on ¢ is suitable when compared with cost
data, but is not large enough to encompass the attitude responses from the two
wind profiles peaking at 48 and 56 seconds. This fact weakens the previous
conclusion concerning the possibility of using a single fixed-gain controller
for all I. C. in interval 15, since the maximum value of |¢° | used was already
excluded from that conclusion. It therefore seems likely that some technique
such as gain modification with the amplitude of ¢ would be advisable in interval
15.
a more desirable grid from which to choose controllers.

There also exists the possibility that further grid mapping would lead to

CONCLUSIONS

In general, the results are at least as good as anticipated, especially in
interval I,. Starting in that interval with an unstable but good (X° =0)-
controller, only three iterations of grid mapping yielded a gain grid in which
the best controllers for all I. C. 's (both zero and non-zero) were stable and
the changes in gain were monotone with increasing values of I. C. 's on each

state variable. A bonus result was that the gains changed in the same direction
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Table 3-9. Relative Magnitudes of I. C. 's

From Cost Data
Internal From Responses to Wind Profiles (1/3max amplitude Values Chosen
) 1 . T .
PrOf:ﬂetPeaks pdeg | 2z ™ & deg |o deg {9 ] deg 1z ll¢e | geg 2o | 2
sec sec sec
t t= 36 t= 36 t=36 t=52 t=36 t=36 t= 36 t= 36
48 -0.4 0.2 3.2 10. 2 0.222 0.36 0.1 0, 172285
56 0 0 0 6.1 0.2 0.344570
I 64 0 0 0 3.3 0.4 0.698140
72 0 0 0 0
80 0 0 0 0
t=60 t= 60 t=60 t=68 t=60 t=60 t=60 t=60
48 * * * * 0.2 0.308865
56 -1.8 0.7 10.3 * 0.65 0.824 0.4 0.617730
15 64 -1 0.8 5.7 10.3 0.8 1.23548
72 -0.7 0.2 3.4 5.5
80 0 0 0 2
I corresponds to 36 <t <56 |Otw | disturbance always
* Not shown in data 10.4 de
I; corresponds to 60 <t <68 : £
L . e et e e o - -
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with I. C. 's on every state variable. This suggested the possibility of a
compromise controller in the grid which would give good performance for all
I.C.'s, and one such controller was found.

The same conclusions are applicable to interval I5 except that the controller
started with was unstable and the minimax controllers for non-zero I. C. 's

were still unstable, but much less so.

The technique of choosing minimax controllers using zero I. C. 's, and then

using these as a starting point for considering non-zero I. C. 's proved to be
efficient.



SECTION 4

EXTREMAL BOUNDED AMPLITUDE, BOUNDED-RATE INPUTS
FOR A HARMONIC OSCILLATOR

The problem considered is the determination of extremal inputs to a forced

harmonic oscillator described by equation (1).
y +y = vit) (1)

The system is assumed to be initially at rest, i.e., y(0) = fy(O) = v(0).= 0.
The input, v(t), is admissible if it satisfies the following constraints for
t>0:

° v(t) is continuous, with piece-wise continuous derivative v(t)
e |wnl<1

o vl <xkx/m, k>0

An extremal input is an admissible input defined on the interval o, T1] that
maximizes [y(T) cos 8 + y(T) sin 6] cos ¢+ v(T) sin ¢ for some T, 6 and ¢
where T >0, 0 < 8 <27 and | 8] < —g— . Extremal inputs may be characterized
as follows. The response of the system (1) to an input v(t) forms a trajectory
in a three dimensional Euclidean space with coordinates of a point on the
trajectory given by y(t), y(t) and v(t). Let the set of attainability at t = T be
the set of all endpoints (points with coordinates y(T), };(T), v(T)) of tra-
jectories corresponding to admissible inputs on the interval 0 < t < T. Such
a set is closed and bounded. An extremal input on the interval 0 <t < T is
an admissible input to which corresponds a trajectory with an endpoint that

is a boundary point of the set of attainability. Hence, an equivalent definition
of an extremal input is an input that is a time optimal regulation input with the

time reversed.
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The problem can easily be formulated as one with a phase constraint. Let
u(t) = v(t) and introduce the vector x(t) with components xl(t) = y(t), xz(t) =
y (1), x3(t) = v(t). Then equation (1), with initial conditions specified and
admissible inputs, may be represented by

% = Ax+bu, x(0) = 0, |ul < k/m, where: (2
0 1 0 0

A = -1 0 1 and b =] 0
0 0 0 |_1

The phase constraint is then |x3 | < 1. A discussion of the development of
necessary and sufficient conditions for extremal inputs in problems of this
type is given in reference 1, pp. 1-2. For this particular problem these

conditions say, essentially, that extremal inputs are given by:
wt) = (k/msgn [P (Db] (3)

where sgn(0) = 0 and ¥(t) is a piecewise continuous solution of an adjoint
equation with a piecewise continuous right-hand side. The discontinuities
are allowed only at values of t which are endpoints of maximal intervals in

which the corresponding response has |x = 1. The points of discontinuity

|
of ¥ can be further restricted to occur on?iy at right-hand endpoints of such
intervals. A more detailed statement of these conditions will be given in the
section on APPLICABLE THEORY. Also it will be shown that allowing at most
one discontinuity in ¥ at t = T, the extremal input with respect to ¥(T) x(T) is
given by (3). Thus, since the response x(T) depends only on the input on the
open interval (0, T), extremal inputs correspond to continuous solutions of

piecewise continuous adjoint equations.

This problem is chosen for two reasons. The first is that it presents a case
in which the number of segments or arcs of extremal responses which lie

on the phase constraint can be made arbitrarily large. This makes it possible
to determine that such segments are interrelated. The second is that an

explicit solution can be obtained.
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In the DERIVATION OF EXTREMALS the theory will be used to treat a
particular case. Ranges of values of k and 8 will be chosen and the

extremal inputs will be derived for all values of the parameters T and ¥.

Formulas for extremal inputs are given in EXPLICIT REPRESENTATION
OF EXTREMALS for the parameters k, T, 0 and ¢ with ranges k > 2.5,
T

T>0,0<6<mand || < J.

The results are then summarized in the CONCLUSIONS.

APPLICABLE THEORY

The necessary conditions for the present problem will be based on general
necessary conditions given by Gamkrelidze, references 2 and 3, and
improved by Bryson, Benham and Dreyfus, reference 4. Then the necessary
conditions given by Russell and Schmaedeke, reference 5 will be cited.
Comparison of these necessary conditions with sufficient conditions obtained

by Russell, reference 1, show that the necessary conditions are also sufficient.

The notation in reference 3 will be followed with the exception that the
components X, and {bo will not be included in the vectors x and ¥. Thus
f(x,u) = Ax + bu. The phase constraint is represented by requiring x to

lie in the region G represented by:

G = Igx) = (xg)°-1<0] (4)
Then p(x, u) = 2x5u and Bx = (0,0,2u). H¥, x,u) = ¥f(x,u) and m(¥, x) =
YAx, MY, x) =rré%x H(Y, x, u), where U = {u:|u] <k/ml
u

Theorem 25 of reference 2 may be stated as follows (taking note of theorems
1, 22 and 24 of reference 2):

57



Suppose that x(t) is an optimal trajectory of equation (2), corresponding to
the optimal control u(t), and that x(t) lies entirely in G for 0 <t < T and
contains a finite number of junction points. Also suppose that each of its
sections which lies on the boundary of G is regular. Let 0 < ™ < Ty <:-

< TZq—l < 72q < T denote the junction points. Then there exists a piecewise
continuous vector ¥(t) = (¢1(t'), 4’2(1:), ¢IJ3(t)) and a piecewise continuous,

piecewise smooth scalar-valued function A(t) such that:

dx SH(¥, x, u)

= 7 = f(x,u) = Ax + bu (5)
dt Fot)

@ CHM, %W gy P Ly A+ x(mAD) (0, 0,.2u) (6)
dt ox O

HP(L), x(1), u(t)) = M@@®), x(t)) [1 - x(1) ] + "m(P(t), x(t)) (7)

where x(t) is equal to zero when g(x(t)) <0 and is equal to one when g(x(t)) =
0, Mt) = % Y(t)b sgn [xS(t) ). The vector ¥(t) is zero nowhere on [0, T]. On
T 9io1 <t < Tois g(x(t)) = 0 and §b+( Toi- 1) is tangent to the boundary g(x) = 0
< <t < i
at X(TZi- 1) and dA(t)/dt < 0 for Toio1 t Topr 1
at junction points the following jump condition is satisfied:

=1,2,...,d9. Furthermore,

either ¥* (1) = ¥7 (1) + b, grad g(x(7), (8)
or - (‘ri) + uigrad g(x(Ti)) = 0, K {0, (9)
where #i is a real number.

In reference 4 is is shown that the jump condition (8) and (9) may be

replaced by:
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- _ + \
- gt
P71y = ¥ (T, + Mgrad glx(T,)) (11
s ¥ can be defined so that it is continuous at TZi—l’ i=1,2,...,q.

summary of these results for the problem being considered is that if x(t)

1d u(t) are optimum then: (Introducing the notation Ty = 0 and TZq 41" T,
quation (5) is satisfied (dx/dt = Ax + bu) and there exists a piecewise contin-
>us P(t) such that:

dp _ 1 [ ]

T = - YA + = (1) P (t)sgnlx,(t) ] (0,0, 2u) (12)

3 3
dt 2
= i < < = i < < 1=

here X(t) = 0 if Ty, <t <7,. ,, and x(t) = 1, if Togry St S Ty 150,1,2,...,q.

urthermore u(t) = 0 and g(x(t)) = 0, if X(t) = 1 and u(t) = (k/ ﬂ)sgn[il)S(t)] and
x(t)) <0, if x(t) = 0. The first two components of ¥(t) are continuous and the
ird is continuous except possibly at T2i’ i=1,2,...,49. At these points
- +

= i = € i
. (T2i) le(Tzi) + 2uix3(‘r2i). Since X (t)u(t) = 0 for each t € [0, T J, equation

2 may be written as:
dy/dt = - ¥A (13)

ote that this formulation gives an adjoint equation with a continuous right-
and side and that u(t) differs from (k/msgn [#(t)b ] when x(t) = 1, since if

t) =1, u(t) = 0 and l/)3(t) FO. A slightly different formulation can be made
hich will change these results. In the above formulation the constraint was

Jjoined by setiing:

Y, x,u) = HP, x,u) - ) Ap(x, u) (14)
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where p(x, u) = dglx(t) }/dt. Adding the constraint by setting:
h($, x,u) = H(P x,u) - DL glx)

yields an equivalent formulation, reference 6.

If the formulation indicated by (15) were used then ¥(t) would satisfy:
ap/dt = - YA + xlgrad gx) = - YA + xY0, 0, 2x5)

where C = %¢2sgnx3. Also u(t) would satisfy:
u(t) = (k/w)sgn[¢3(t) l, o<t<T

where sgn(0) =

The necessary conditions given in reference 5 are also applicable to this

problem. They give further information regarding extremal inputs. These

results may be summarized in the following definitions and theorems from

reference 5 (stated for the present problem in terms of notation given above).

Definition 1

The input u, is extremal if there exists a non trivial (continuous) solution

Y of (13) such that} ¢3(t) u (t) dt = maxj l.b (t)u(t)dt. The maximization is

taken over all u with lu(t)} <k /mand I f u(‘T)dT' <1for0 <t <T.
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Definition 2

Let u(t) be an admissible input on the interval [0, T]. An interval of type B

for the input u is a maximal closed subinterval of the interval [0, T] on
t

which lv(t)l = 1. (v(t) =I w(nd?n.
0

Definition 3

An interval of type P1 for u(t) is a maximal closed subinterval of [0, T]in
the interior of which Iv(t) | <1.

Definition 4

An interval of type P2 for u(t) is a maximal subinterval of [0, T ] whereon
() | # 1 and |uw(t) | = k/7 and sgn [u(t) ] is constant.

Theorem 1

Let u(t) be an extremal input and assume |v(t) I = 1 on a subinterval of
[0, T Then, on that subinterval:

v(t) [ap (1) /at] < 0. (18)
Theorem 2

Let u(t) be an extremal input. Then Iu(t) I = k/ W, almost everywhere, on
an interval of type P1 for u(t).
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Theorem 3

Let u(t) be an extremal input and suppose there exists an interval I of type P1
for u(t) with one endpoint, say t*, which is an interior point of lo, T]. Then
for t€I:

u(t) = (k/msgnldg(v) - bate) 1. (19

Theorem 4.

Let u(t) be an extremal input and suppose that the entire interval [0, T]is of

type P1 for u(t). Then there exists a constant ¢ such that u(t) = (k/msgn [¢3(t) -c]
for 0 <t <T. If there are at least two intervals of type P2 for u(t) contained

in [0, T], then the constant c is equal to {bs( 7T) where T is any endpoint of an

interval of type P2 which is in the interior of [0, T .
In view of equation (13) the inequality (18) is equivalent to:
v(t)¥,(t) > 0. (20
Also since v(0) = x3(0) = 0, the point 0 is an endpoint of an interval of type P1
for any extremal input, i.e., there exists a T, < T such that (o, le is an

interval of type Pl' If Tl = T then from theorem 4 it is clear that a continuous

p(t) exists, namely p(t) = ¢3(t) - ¢, such that u(t) = (k/ Msgnp(t). If T, <T there

exists an integer N > 1 and a sequence T, < 7T, < Tg £ S Ty S T such that
[TZi—l’ TZi] is an interval of type B fori=1,2,...,N. [T2i’ 'r21+1:| is an
interval of type Pl for i=1,2,...,N-1 and if TZN <T then [TZN’ T ] is an interval

of type Pl' In this case defining p(t) to be equal to 0 on intervals of type B
and to be equal to i,b3(t) - ¢’3(t*) on each interval of type Pl’ where t%€(0, T)
is an endpoint of the interval of type P1 yields a continuous function p(t) such

that u(t) = (k/mMsgnlp(t) ]. Note that from Theorem 3 if [T2i’ TZi+1]C(O, T)
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hen §b3(1'2i) = ¢3(T2i+1)' Also note that the vector ¥(t) with components
!'1(1:), !.bz(t), p(t) satisfies equation (i6). These necessary conditions can
re summarized as follows: if u(t) is an extremal control there exists a
continuous solution ¥(t) of equation (16) such that u(t) is given by equation
+17) and on each interval where lv(t) | = 1 the inequality (20) is satisfied.

Extremal inputs defined by Definition 1 are interpreted geometrically in
the statement and proof of Lemma 1 of reference 5. It is shown that if a
non-zero vector ¥(t) is chosen to satisfy equation (13) over 0 <t < T, then
the response xe(t) to the corresponding extremal input has the property that
l.b(T)xe(T) > Y(T)x(T), where x(t) is any response corresponding to an
admissible input on lo, T]. This property can be maintained when ¥(t) is
taken as a solution of equation (16) if a discontinuity in ¢3(t) is allowed at
t = T and ¥(t) is continuous on [0, T]. This is accomplished by setting
ib:—,)(T) equal to the value of p(T). Furthermore if the corresponding v(T)
is less than one in magnitude no discontinuity is required. If the
corresponding |V(T) | equals one a discontinuity may appear but the

following inequality must be satisfied:
v(T) [¥5(T) - T;7(T)] > 0. (21)

A sufficient condition for an input to be extremal which is applicable to this
problem is given in reference 1. If IW(T) | <1 and the time scale is reversed

Theorem 1 of reference 1 is applicable. Consider, then, the system
y = Cy+dw, lw <x/m gy <o, (22)

where C = -A, d= -b, y(t) = x(T-1), w(t) = u(T-1t) and in particular y(T) =
0 and g[y(O)] <0. Theorem 1 of reference 1 states:

Let w (t) be defined on L0, T ] and assume w (t) transfers y from y(0) to
0 in [0, T] with g(y) <0, and let N(t) be a covariant vector function defined
and continuous on [0, T 1 with the possible exception of points tl, tz, R tr—l

where r is an odd integer and 0 =t/ <t; <t,<.. <t = T. Ifkis odd,

1 2
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g(&(t)) <1, and if k is even g(&(t)) = 1, for tEIk = [tk—l’ tk] where &(t) is
the response to u(t). Let V V2, N Ur 1 be non-negative real numbers
and {(t) be a function deflned on [0, T], non- negatlve on each I K Also

let IITI(T) I l# 0 and

n =-nC+x(yeglé], (v= grad (2:
where x(t) = 0, if t612k+1’ and x(t) = 1, if tEIZk’ fork=1,2,...,r-1,

+ -~

n(t) - My = v 7glé) . (2
Let H(w,t) = ndwfor all |w| <k/mwhent#t, k = 1,2,...,r-1.

If H(w(t), t) = max H(w, t) for almost all t€[0, TJ, then w(t) is an optimal controlle:

lwl <x/7

Now let ¥(t) = -17{T-t) and Ty = T - tk’ k=0,1,...,r. Then:
b o= - PA +x(0) LD v elx(t)] (20
¥ - () = v pelxit)] (2€
H(w, T-t) = MT-)dw = - () (-b)w = t)bw (2"

Thus, if Hlw(T-1), T-t] = max [ap/(t)bw] where ¥(t) satisfies (25) and (26),
wl<k/m
then «(T-t) is optimal, i.e., u{t) is extremal. Hence the necessary conditions

given above are also sufficient when |v(T) |< 1, since in this ease each Vk =0

and {(t) = -;—Ibz(t)sgn[xs(t)] > 0 on each I, which follows from (20).

2k

In the case when iv(T) l = 1 the theorem of Russell could be modified by
requiring (24) to hold only for k = 2, ..., r-1 since in this case ty = to = 0.
This establishes that, also in this case, the inputs determined from the

necessary condition are extremal.
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I'hese results are surnmarized as follows: a necessary and sufficient condition
‘or u(t) to be an extremal input is that there exist a vector ¥(t), continuous

on (0, T), that satisfies equation (16), such that u(t) is given by equation (;7),
and on each interwval in which |v(t) I = 1, the inequality (20) is satisfied.
Furthermore, ¥ (T) is an external normal to the set of attainability at the

point x(T), and if ¥(T) is an external normal to the set of attainability at x(T),
then ¥(T) = ¥ (T) when |w(T)|<1, and inequality (21) is satisfied, if |W(T) |

Now let ¥(T) = (cos 8 cos ?, sin 6 cos 9, sin®). Then it is easily shown that
4’2(1:) = cos ¢ sin (6+T-t) and

~
tan 9, fort= T,

cos B-cos(6+T-t)+tan 6+ for T <t< T, if TZN <T
6(tan ¢O—tan ®),

0, for t = TZN’ if TZN <T
0, for T 2N lft<T2N if T2N-1 <T (28)
l,b3(t)sec 8=4 cos(9+T—TzN_l)—cos(6+T—t), for Ton oSt Tonoqe M Tongo1 =T
cos B-cos(6+T-t)+tan ¢+ for Ty o St<T, if 7o =T

O(tan ¢O- tan 9)

0, for T 2i- 1__ 2, i=1,2, ., N-1
\cos(6+T—TZi_ 1) -cos(6+T-1), for Ty, ,<t<T,. 4, i=1,2,...,N-1
where 0= 7 <T < T, <...< i- 1_ Ton S < T and 6 is equal to zero or one.
If [W(T)| <1, then 6 =0, and if IIV(T) | = 1, then 6 = 1 and W(T) (tan ¢ - tan ?)

> 0. Thus, u(t) is an extremal input corresponding* to ¥(T) if and only if

*This means ¥(T) is an external normal to the set of attainability at x(T)where x(T)
is the response to u(t).
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u(t) = (k/vr)sgnEz.bB(t)secsb], 0<t<T (29)

where ¥.(t) sec'd satisfies (28) on0<t < T, and

eyl <1, 7y , <t <7 5i=1,2,...,N, (30)
(Ty; = Toz_q) V(D) sin (B+T-0 > 0, T, . <t < 7,5i=1,2,...,N, (31)
|V(T2i_1) | =1, i=1,2,..., N, (32)
cos(6+T-'r21_2) = cos(@ + T_TZi— 1); i=2,3,...,N-1, (33)
cos 6—cos(9+T-7'2N) + tan ¢+ &(tan ¢0 - tan@) = 0, if T2N-1<T’ (343)

cos 8 - cos(6+T-T ) +tan ¢ + & (tan ¢o - tan ¢) = 0, if Ton-1 - T»(34

2N-2
(T—TZN_l) [cos(6+T—T2N_2) - cos(9+T-72N_1):| =0, (35)
O0w(T) (tan @ - tan ¢o) > 0. (36)

Equations (32) through (35) are 2N equations in the unknown parameters, N,
Tss i=1,2, ..., 2N, ¢o and 0. The relations (28) through (31) are constraints
which a solution must satisfy. The simplicity of this problem permits
explicit solution of these constrained equations. The nature of T1 is

determined in the next paragraph.

Consider equation (32) with i=1, namely, IV(T )| = 1. Equations 28) and

(29) yield v(T,) = (k/m { sgnlcos(6+T-T ,)-cos(6+T- t) Jdt. The zeros of
cos(6+T—T )- cos(9+T t) occur at t= 8 +T i (6+T - Tt 2mm for man

integer. Smce there is at most one zero in the interval (T -2m T ) and
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1 is greater than two, T, must be less than 27. Hence, in the interval (0,'1'1),
1(t) can change sign at most once. Therefore, either T1 = m/k, or there exists
in integer m  such that 0 <2(9+T+m017)—‘1'1 <(m/k) <7, and T2 [2(9+T+m01r)-1'1]

- #/k. That is, if T # m/k then there exists an integer m  such that
4
Ty = = (6+T+m _m + (7/3k) (37)
3 o
where m0 satisfies
w2k <9+T+mo1r <2%/k. (38)
Furthermore, if ’I'1 = 7/k there can be no zero in (0, %). Hence, there exists
an integer m such that
< m <
- £ 0<—= < -~
2(9+T+mo7r) Ty 0 . T 2(9+T+m01r)+2‘n' T,
This is equivalent to
(k) - < 6+ T +m_ 7= (m/2Kk). (39)
For i=2,3, . . ., N-1, Toi-92 and Toi-1 May be determined as follows. The

general solution of equation (33) for 721—2 is

T =8+Tx(6+T -T + 2m)

2i-2 2i~1

where m is an integer. Equations (28) and (29) yield IV(TZi_ 2) | = 1 and u(t) =
- - - <t < i
(k/msgnlcos(8 + T Toi-1) ~ €OS (6 +T - t]for Toi-g <t <Ty;_ ;- Thereis
at most one sign change of u(t) in Toi-1 " 27 <t < Toio1- The maximum length
that an interval of constant sign for u(t) can have is 27/k which is less than 7
when k is greater than 2. Thus Toi-1 = Tgj_o must be less than 27 and is

greater than zero by definition. Therefore,
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Toi-g = 2(8+T) - Ty, 4 +2m,m, (40)

. _ < _ < .
where m; is such that Ty, , - 27 2(0 +T) Toj-1 t2myT <7, ., ie.,

- <
Ty " MO+ T +mm<Ty, .. @1)

Thus, u(t) is of constant sign in (T21—2’ T2i- 1) and hence from (34) , T2i—1

= Toi-9 +(2m/k). This result, together with equation (41), yields the
following:
Tojog = 8+ T +m. 7 - (/k) (42)
Toiop = 0+ T+mm+ (m/k). (43
The integers m, can be readily determined from the relations Ty 2 T > To-T
andm, ; =m, +1fori=2,3, ..., N-1. Incase T, # m/k it is easily shown
thatm, =m_+1. If 7, = 7/k then m, = m_ + 2 if (M/k)-m S8+ T +m 7 <

(27/k)-m, and m, = m_ + 1if(27/k) -7 <6+ T+ m 7 < (m/2K).
Note that if ToN-1 <T, then equation (35) implies that equations (42) and (23)
hold also for i = N.

Now consider equations (34a) and (34b). Suppose 6 =1, i.e. Iv(T) | = 1. 1f

= > = o=y
TZN T T2N—1’ ¢o 0. Ifr T TzN_l

¢o can also be determined from limiting cases when 6= 0. Note that when

then tan ¢ = cos (6+T - TZN) - cos 6,
® = ¢0 the value of 0 is immaterial.
Suppose now that 6 = 0. Equation (34) can be written as

cos (B +T - ) = P, (44)

ToN
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where
p = pls, ) = cos6 + tan9. 45)

It is clear from equation (45) that p must be restricted by the relation
lp| < 1.

Thus Ton = 6+ T [cos™? P+ 2ma) where 0 < cos™! p < m Since

< i i -
IV(T) l <1, T2N T. It is readily shown that T T2N

T - Ty is equal to 27 - 6= cos™! por -8 +cos™! p. The three cases:

<2w. Hence,

6> cos_1 p, 6= cos—lp and 6 < cos_l p, will be considered separately.
Before proceeding with the analysis of each case let it be noted that

+ + +
v( TZN) sgn [u( ToN ] = -1 and that sgn u(TZN) = sgn d¢3 /dt szN )
sgnl-sin(8 + T - 1

Ton
In the first case, 6 > cos™! P, T - Toy = 27 - 8+ cos le. Suppose
Ton = T+60-27- cos—1 p. Then u(t) changes sign at T + 6 - 27 +
cos—1 P and sgn u( TZN+) = sgn[-sin(Z‘n' -+ cos_1 P)]=-1. Therefore v(T
= +1 and

2N)

~-(k/m TZN <t <T+6—21r+cos—lp
u(t) =

L Hk/m T +6-2m+cos I p<t<T
The constraint Iv(t) | <1, TZN <t <T imposes the conditions T-(T+6-
-1 -1
2mtcos P <T + 8 - 2% + cos p--r2N<-2w/k, which simplifies

to

(27-6)/3 <cos lp < m/k. 45)
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Now if TZN =T+ 6- 21+ cos_lp, u(t) is constant on (TZN, T) and sgn
+
= = - = <
u(T2N ) = +1. Thus v(TzN) 1 and u(t) = k/ 7 for ToN t <T. The
constraint T - TZN <2m/k is equivalent to

cos—lp >27 - 8- (27/k)

Notice that ¢O is determined by [W(T)| = 1. This corresponds to cos”lp =
(2m-0)/3 from (46) or cos—lp =27 - 6 - (27/k) from (47).

In case 0 = cos_lp, T2N =T+ 06-27+ cos_lp and the results are the same
1

as when 6 > cos_lp and Ty = T +60-27+cos "p.

In the final case, 6 <cos_1p, TZN =T+ 6 - cosnlp orT+0-27+ cos—lp.
Ifr =T+9—cos—1p, u(t) = -k/mfor 7 <t <T and ¥(T,..) = +1. The

2N 2N
constraint |W(T)| <1 imposes the condition

2N

cos—1p< 6+ (27/k)

IfT =T +6-27+ cos—lp, v(‘er) = -1 and

2N

-1
<t < -
k/m, TZN t<T+6-cos "p
u(t) =

-k/m T + 6 - cos_lp <t<T
The constraint |v(t) | <1 for ToN <t <T yields the condition
7 - (n/k) <cos lp <(2m+6)/3

In this case ¢o, as determined by IV(T) | =1, is given by cos_lp =
8 + 27/k from (48) and cos_lp = (27 + 8)/3 from (49).

It is concluded from the preceding analysis that the parameters { Ti’ ¢o’

5, N} are not arbitrary but are functions of T, 6, ® and k. One important
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consideration that has been neglected for the most part in the analysis
is the required relatlon between v(T ) v(‘r'2 1) and u(‘l'2 ), namely
that v(‘r ) u(‘r ) <0. Imposing thls constraint will remove all the
amblgultles that remain but requires a detailed case by case analysis.
An example will be considered next to demonstrate the complications
involved in deriving the totality of extremals.

DERIVATION OF EXTREMALS

Before proceeding with the derivations for a sample case it can be noted
that the formula to be used for TZN depends on the value of 8. That is:
(assuming k > 2) the interval (46) is of positive length if 8 > 27 - (37/k)

the interval determined by (47) and 6 > cos_lp has positive length if

0 > 7 - (7/k) and the interval (49) is of positive length if 8 > 7 - (37/k).
Hence the nature of extremals will depend on the relation of 0 to the values
27 - (37/k), m- (m/k) and 7 - (37/k). Other such break points in 6 arise
from considering the special cases when N < 1. The distribution of the
break points in 8 relative to the interval [0, 7] and the ordering of all break
points depend on the value of k. The values 2, 2.5, and 3 are critical
values of k which determine the number and ordering of break points in 6.
For example, if k > 3 the break points in 8 for T, are 7 - (37/k) and

- (n/k), whereas if k <3 they are 7 - (7/k) and 27 - (37/k). The other
break points in 6 are T - (m/2k) and m® - (57/2k) where m = 2 if 2 <k <
2.5andm = 1if k > 2. 5.

Now consider the case of k > 3 and 7 - (37/k) < 8 <7 - (57/2k). In this

case as in all cases, if T < 7/k the constraint ol <1, 0<t <T, is

always satisfied and N and 8 are both zero.
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The possible values for ToN when T > 7/k can be determined as follows.
The inequalities 7 - (5m/2k) <& - (7/k) and 7 < 27 - (37/k) are satisfied
when k > 3. Thus, with 8 restricted to [7 - (37/k), 7 - (57/2k)], the
inequality 6 > cos_lp implies cos_lp <27 - 0 - (2m/k) and m/k <(2m -
8)/3, i.e., neither (46) nor (47) is ever satisfied. Hence T_._ =t when
6> cos_lp (or equivalently ¢ > 0) and 2, = 0. When ¢<0 and |V(T) I
<1:

- _ -1 . _
ToN = T + 6 - cos “pif v(TzN) = +1

_ _ -1 _. -
TZN—T+9 27T + cos plfv(TzN) 1,

subject, of course, to Ty > ToN-1" The limiting cases when M) | =
1 are ToN = T - (27/k), which corresponds to cos—lp = 0+ (2m/k) in (50),
N T - 4(m-6)/3, which corresponds to cos_lp = (27 + 6)/3 in (51).

and T2
When m/k <T < 7 - 6+ (n/2k) (38) indicates T, = 7/k and it is easily
deduced that if ‘l'1 = n/k, v(Tl) = +1. It is also easy to see that N is at
most 1if [W(T)| <1. Thus, ifN=1, 7, = 7, = T + 6 - cos™'p from (50
when |W(T)| <1. Furthermore, as v(T) ranges from +1 to -1, T, ranges
from T to T - (27/k). Hence, if T > 3n/k, T, > T,. Butif T <3m/k, T -
(27/x) <m/k so that T, = T, for some value of @ As ¢ is decreased from
this particular value N = 0 until WT) = -1 at which point N = 1 and T =Ty
T. Thus, the following results are obtained.

For m/k <T <37/k:

¢ >0 impliesN=6=1, ¢ =0, 7. =m/k, T,=T

0> 9> ¢1 impliesN=1,6=0,T=1r/k,T=T+9—cos_1p

1 2
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¢1 > ¢> ¢4 implies N = 0

¢42¢ implies N = 6 = 1, ¢O=¢ T, =1T,=T,
where ¢1 and ¢4 satisfy:

tan 9?1 = -cos 9 + cos(T + 6 - n/k)

tan ¢4 = -cos B + cos(0 + T/2 + 7w/ 2k)

For 3m/k <T < m- 6+ (m/2k):

>0 implies N = 6= 1, ¢o=0, T1=1T/k, ‘1'2=T

0> 9> ¢8 implies N =1, 6 =0, T, = ﬂ/k, Ty = T+ 6 - cos_lp

¢ > 0 implies N = 2, 6= 1, @ = ¢8, 7, =k, T, = T -(2n/k),
Ty=T,=T

where tan ¢8 = -cosB + cos(6 + 27/k).

When m- 6 +(7m/2k) <T <7 - 6+ (7/k) it is possible that T is given by (37
with m = -1. From (39) it is clear that ™ is given by (37) if 7 - 8 +
(m/2k) <T <m- 6+ (k) andif - 6+ (m/k) <T <7- 6+ (27/k), then T
is either given by 37) or is equal to m/k. As shown above T2N = Tand ¢
N=6=11if ¢ > 0. Then T, is given by (37). With T, glven by (37), V('Tl)
+1 so that ToN is given by (50), i.e., T, = T + 6 -COS_lp- Now T - (2m/k)
> 4(6+T-m/3+(m/3k) is equivalent to T <4(m - 6) - (77/k). Thus the

following result is obtained for - 8 + (w/2k) <T < 4(7-6) - (7Tn/k):

=0 and

"o =

$>0: N=6=1, ¢ =0, 7. = Un/x) +4(6+T-ml3, 7,=T

0> ¢>0,;: N=1, 6=0, 7, = [m/) +46+T -m/3, 7,= 8+ T - cos 1p

2
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¢, > ¢ N=2, 6=1, ¢ = ¢

g > = e Tl=Ew/k+4(e+T—1r)]/3, T,=T-

If 4(m- 6) - (7m/k) <T <7 - 6+ 27/k the above result for $ > 0 holds.
For 0 > ¢> ¢, where tang, = -cosd + cos( (T + (n/x) + 27 + 6]/3);
6+T - cos_lp > [(m/k) + 4(6+ T - m1/3. Hence for this range of 9;
N=1, 6=0, T, ® (m/k) +4(6+T - mJ1/3 and Ty = 6+ T - cos—lp.
Then for ¢2 > ¢ > ¢k, for some ¢*, N = 0 and u(t) is given by:

~(k/mM, for0<t<O+T - 2w+ cos lp

u(t) = (k/m), for 9+T—21T+cos_1p <t <9+T-cos—1p

-(k/m, for @+ T - cos_lp <t<T

The value of ®¢ is the maximum of the values ¢, and @, where 8+ T -
27 + cos-lp(e, ¢1) = w/k and T = (n/k) + 47 - cos_lp(e, ¢6) 1. It can
be shown that 8, > ¢ when 47 - 6) - (77/k) <T < [4(7 - 6)/3] + (n/K),
and @ > @ if [4(r- 6)/3]+7/k < T <7m- 6+ (2n/k). Thus, the
following result is obtained for 4(m - 6) - (77/k) <T < la(m - /3] +
(m/k):

$>0: N=6=1, ¢ =0, 7= Un/)+46+T-m]/3, 7,=T

[¢]
N=1, 6=0, 7. = [(n/x) +4(6+T -ml/3, T.= 6+T - cos 1p

2

In the case, [4(7- 6)/3]1+(m/k) <T <m7- 6+ (27/k) and 4296 7, =1k
and v(‘rl) = -1. Thus T2N =6+T- 27+ cos_lp as long as lv(T)I <1 and
the limiting case occurs if 8 + T - 27 + cos_lp =T+ [4(6 - m/3]. Thus

for this range of T the following result is obtained:
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$>0: N=6=1, ¢ =0, 7,= lm/)+40+T-m]/3, 7,=7T

0>¢>¢: N=1, 6=0, 7, = m/k) + 46+ T - m1/3, Ty = 6+T-cos—1p
¢, >8>9¢: N=0

¢, > ¢>0¢: N=1, 6=0, T, = 1/k, T,= 6+ T - 21+ cos p

6. > ¢ N=2, 86=1, ¢ = ¢.,T, = 1/k T,=T+[6-m/3], 1,=17,="T.

where tan¢5 = -cos8 + cosl(2m + 6)/3 1.

Now consider T in the interval mm - 6 +(27/k) < T < (m+1)7 - 6 + (n/

2k), where m is any integer greater than zero. Since (38) is not satisfied,
5 > (m/k). Itis seenthat 6 + T - mm - (w/k) > 7/k and
that 6+T-m + (7/Kk) <T<6+T-(7/k) for the ranges of 6 and k considered. Thus

1 = - - -1 - = >
setting T,; 0+T-7- (m-i)m - 7/k and Toie1 = Top T (27/%), Ty2 Tyand T, g

T, = m/k whenever T

T . Hence for > 0, N=m+1, 6=1, ¢ =0, T, = n/k, T,.. =T and

2m+2 - o 1 2N ;
the intermediate T; are as given above. For 0 > ¢ > ¢3 the only changes
are that 6 = 0 and TZN =8+ T - cos_lp, where tan¢3 = -cosB + cos(Tm -

m/k). For ¢3 >¢> ¢5, N is reduced from m+1 to m with no change in
T.ifi <2m and T =9+T—2‘n'+cos_1p. For ¢. > ¢, 6=1, ¢ = ¢_,
i 2m 6 5 - o 5
N = m+1, Tom = T + 46 - m/3, Tom+l = T2m42 - T and the remaining
'ri are unchanged.

Consider the interval mm - 6 + (m/2k) <T <m® - 8 + (27/k) with m > 1,

In this case 6 + T - (m-1)7 - (7/k) > [4(6 + T - mmM+(7/k)]/3. Hence the
results are similar to those just obtained except that 1'1 = [4(B+T - mm+
(m/x)]/3, i.e.,

$>0: N=m, 6=1, ¢o=0, T, 7 (46 + T ~ mmHw/k) /3, T,.= 0+ T -

21
(m-i)ym - (7/k)

T2i+1=T2i +(27/k), i=1,2,...,N - 1, Ton T.
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0>9¢> ¢3: Only changes from ¢ > 0 are 6 = 0, ToN = 6+T - cos_lp

¢3>¢>¢5: Only changes from ¢ > 0 are 6 =0, N = m-1, ToN = 6+T -
21T+COS—1P

> 13 = = = = - = =
8. > ¢ N=m, 6=1, 8 =6, T, =T+ (46 - m/3) 7, _ =7, =Tandr,

through T are the same as when ¢ > 0.
2m-3 -

This completes the derivation of the extremals for all T > 0, k > 3, l¢|
<7/2, and 7 - (3®7/2k). <6<7 - (59/k).

EXPLICIT REPRESENTATION OF EXTREMALS

The formulas for the extremals will be given in a tabular form for T >0,
k > 2.5, l¢| <7/2 and 0 < 6 <7. To simplify the table the extremals will
not be given for the break points in T and 6. For any particular case of
interest where T and 6 are break points the extremal could be readily

determined from consideration of the neighboring intervals.

The following functions of k, 6, ¢ and T are introduced to simplify future

expressions and notation of the dependence on the parameters will be

suppressed.
hy = T/k
h2 = 27+ 6)/3
hy, = (4m+ 6)/3
h, = 6+ T - cos_l(tan¢+ cosb)
hy = [46+T- mHn/w]/3
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h6 = 6+T-21+ cos_l(tan¢ + cosB)
hy, = T+ [a(6 - m/3]
h8 = 6+T-m-(7/k)

Let g(k) = 0if 2.5 <k <3 and g(k) = 1 if k > 3 and define

6 = 0
6, (k)= m- (5 + g(k) Xn, /2)

0y(k) = m - [2 + 3g(k) ](h1/2)
05() = m- [ 1 +g(k)n, /2)

6,() = [2 - g(k) I - [6 - 5g(k) An,/2)

Then let j(6, k) be defined implicitly by Gj(e k)(k) <@ < Gj(e k)+1(k) and the
dependence on 8 and k will be suppressed from now on. Also introduce the
functions qi(j) = 613‘ fori, j=0,1,2, 3,4 where éij =0ifi# jand éii= 1. The

dependence on j will be suppressed in the future.

Further, introduce the functions ¢i'(T’ B8, k), defined implicitly by |¢i l

< m/2 and ‘can¢i + cosB = Py fori=1,2,...,11. The p, are defined as
follows:

p; = cos(T + © - hl)

Py = cos[h2 +(T + hl)/3]

Py = cos(m -~ hl)
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P, - cos[9+(T+h1)/2:|
P = cos(hz)

Py = coslm - (t - hl)/43
Py = -Pg

pg = cos(6 + 2h1)

,0.9 = cos(hs)

Pio = cos[h3 +(T+h1)/3]
Pr1 = P3

The break points in T, i.e., endpoints of intervals in T in which the form

of ihe extremals remains unchanged, are given below:

T, = h

T, = 3nq +gaq)+ La(m - 6)—h1] (1-g)q,/3 + r- 6+ (h1/2)]
(a, +gag) + thy + la(m - 6)/3]}[q3(1—g)+q4]

T, = (r-6+ (h1/2)](q0 +q,) + [4(m - e)-hl][(l-g)q2 + gq3] +
tn, + [4(m-6)/311gq, + 3h, l(1-g)qg + q,]

T, = [4(7 - 6) - 7h1][(1-g)q0 + gql] +(m- 6+ 2h))glq +qy) +

th, +[4(m-0)/30H1-g)a, +3n, [(1-g)a, + gag 1+

[2m - 6+ (n;/2) )(1-g)az +q,]



H
0

4 th, + la(r-6)/313 U(1-g)q  + ga, I+ (27 - 8+ (h /) Ilgla, +
ag)+d, 1 Hm-6+2h,)(1-g)q, + (2m-6+2h ) [(1-g)ag + ga, 1+

La(2m - 9)-7h1] (1-gla,

T5 = (m- 9+2h1) [(l-g)qo+gq1 J+(27- 6+2h1) [g(qo+q3+q4)+q2] +
[27-6+(h,/2) Ni-g)(q;+ag) + M1-gla, + th +l4(27-6)/3] ]
(1-g)q,

T, = nm-6+(h,/2)+(3h,/2) [q4+(1—g)(q1+q3) J—ﬂ[q1+( 1-g)(a_+a,) IR
n>3

Topr1 = n1r—9+2h1—(3h1/2)[q4+(1-g)(q1+q3)]+1T[g(q4-q1)+(1—g)(q3-qo) ],

n>3
The significant break points in ¢ depend on T, 6, and k in a complicated way.
But throughout any given 8 interval and T interval they are either 0 or one
of the ¢i’ i=1,2,..., 11, defined above. Thus, for Tm—l <T <Tm, let
¢'(T, 8,k), i=1,2.3,'4, be defined by:

o' a,

2

2 = A 94 ,m=1,2,3,...,
3 m

@ =)

4
K q3

a
L 4

79



where:

[¢8(1-g)+¢4g:|

_
0 0 0 8,(1-g)
0 0 0 ¢,(1-g)
A=
¢, 4 9 _ [¢4(1-g)+¢1g]
B 8, 9 [¢4(1—g)+¢6g] B
0 0 0 8,(1-g)
A, = 0 0 0 ¢4(1-g)
%q (¢, (1-g)+oe] &, [¢1(1-g)+¢2g]
3y E¢6(1-g)+¢8g] % [¢5(1-g>+¢6g]
0 0 ¢4(1-g)
A, 0 0 [¢4(1—g)+¢2g]
%, [¢2(1-g)+¢8g3 ¢,
A [gs(1-g)+0ge] & A
L
o 0 8,(1-g)
0 25(1-g) ¢8(1-g)
A = -
4 [¢,(1-g)+0,g] [ (1-p+t,e] [9(1-g)+8.g]
] [¢6(1-g)+¢8g3 [¢5(1-g)+¢6g] 8
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[¢8(1—g)+¢4g:|
[¢8(1—g)+¢1g]

e 68 6 6

A2
A 'Soo'&




0 0 8o(1-g) % [¢7(1—g)+¢8g]
N 9,8 8(1-g) 9 [8,(1-g)+0.g]
5
¢,(1-g) [¢3(1—g)+¢1g] [¢8(1-g)+¢3g] %y [¢10(1-g)+¢8g]
[¢5(1—g)+¢8g1 ¢ % . @ 1
0 0 B(l-g) A 99(1-g)+¢8g
A - 0 0 ¢8(1—g) ¢8 ¢1(1—g)+¢8g
6
85(1-g) N [¢8(1-g)+¢3g] 3y B.o(1-8)+%g
_E¢5(1—g)+¢8g] ¢ 9 9, P i
0 0 4(1-g ¢ [¢9(1—g)+¢8g]
A - 0 0 #g(1-g) % [¢9(1—g)+¢8g] s
m ? -
85(1-g) ¢, [¢8(1—g)+¢3g] N E¢11(1-g)+¢8g]
[¢5(1-g)+¢8g] 8 % ¢ ¢
Let ¢O = 7/2 and ¢5 = -/ 2 and introduce the functions ri, i=0, 1, 2, 3,4, where

ri=lif¢i<¢<¢i+l

defined but they can be easily determined by considering the neighboring

and r, = 0 otherwise. Extremals for ¢ = ¢" will not be
intervals.

Now the expressions for N, 6, ¢o and ‘7'i for i=1,2, ..., 2N can be given.

For T <T0 it is clear that 6 = 0 and N = 0. When T >T0, 6 = r, + r,

and ¢0 = r0<251+r4 ¢4. In this case N and ’1'i are functions of all the parameters
T, 6, ¢ and k. The dependence on T will be shown implicitly by expressing

<T <T .
m(T)-1 m(T)
will be suppressed, €. g-N = N(m). Furthermore N(m) dominates ‘Ti(m),

the dependence on m(T) where T All other dependence

i.e., Ti(m) given by the formulas for i > N(m) are meaningless.
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N(1) = 1-rg

(1 -r

'rl(l) - r4) {h1+T—h1) [q4+(1—g)q3]}+Tr

3 4

To(1) = ry(h,-T) (1 - q, - (1-g)q3] + T (1-r,)

N(2) = 1 +r, - (rg +r,) [ql(l—g) + q, +q3g] - r2[q3(1—g) + q4]
T {r,lq,+a,Haz-q,)g] + (r_+r)) Lo (1-g)+q, 13

‘r2(2) = T(l—rz—rs) + (Tr2 + h4r3 - 2h1r4) (qo+q1g) + h4r2 [ql(l—g)+
q2+q3g] + [hlr3 + (hl—T)r4][q3(1—g)+q4]

‘7'3(2) = T4(2) = Tr‘4|:q0 + a,8 + q3(1—g) + q4:|

N(3) = 1+r4—(r3+r4_)ql(l—g)—rz(q2+q3g) + (1~r3—r4) [q3(1—g)+q4]

7,(3) = h5qu-ql(r3+r4)(1-g)+q2(ro+r1)g +q1] + T{r4q1(1-g)+(ro+ r,)
[qz(l—g)+q3g]} + h1 {(r3+r4) [qz(l—g)+q3g] + q3(1-g)+q4}

T,(3) = [T(l—r3)+h4r3—2h1r4](qo+q1g)+ [T(l—r2 -rg)+h,r, Jq (1-g)+
(h,-T)r d,g + [(T-2h1) (1-rg -r )+hero+h,r, J(1-q_-q,) + 2h

3 6

(1-ry -r,) (95+d58)
T4(3) = T,(3) = Tr4[1—q1(1-g)] + T(l-rgy -r,) [q3(1—g)+q4]
N(4) = 2 - rg - [1 - (1+r3+r4)g]qo -1+ (ry - rg -1, (1-g) ]q1
71(4) = h5+(T—h5)r4 [qo(l—g)+q1g:| + (hl—h5) [(r2+r3)q1(1—g)+q2+

(4, 79508 -(47/3) lag(1-g)+q, ]



To(4) = [T(l-r2)+h4r2][qo(l-g)+q1g]+(Tro+h4rl)q1(1-g)+h8 [qo+q2
(1-rg -r,) Jg + (hgro+h,r M1-q_-q,g)HT-2h N1-rg-r,)(1-9_-q;-d,8)
T4(4) = Tr,[q,(1-g)+a,g IHhg+2h ) [q +q,(1-r; -r ) Jg+T(1-r )(1-q -, -q.8)
T(9=T5(4) (1-g)+[T(l—r3)+(h4r3-2h1r4)q0+(h4-T)r2q2 Ig
1'5(4) = 1'6(4) = Tr4qog
N(5)=2-r4-(1+r, ~ry -1 ) [(q_+q,)(1-g)+q,g Hr +r,)a_g+as(1-g)+a,e
7,(5) = [h (r_+r))+h (rg+r,) llg (1-g)+q;g I+h, [(a,+a ) (1-g)+q,g
[h.-(47/3) ][q2+(qo+q3)g] + {T(ro+r1)+[h5—(41r/ 3) Yrgtr,) ]q4(1—g)
To(5) = [Tr +h,r 1lq (1-g)+q g lhrgthor, Il1-q,Ha5-a -a,)e] +
T(r+r;)d,g +hy {(1-r3 -r,) [ql(l—g)+q2g Tta g }+(h8—11) [q3(1-g)+
4,8 HT-2h ) (1-rg -1, ) Lq,(1-g)+q,g]
T4(5)=T+(hg+2h, - T) [1—r3 -1,) [a,(1-g)+a,e +a g }(hg-m+2h, - T) [q3(1-g)+
q,e]
T4(5)=T+(h4—T)[rqu(l-g)+(r3qo+r2q2)g]—2h1r4qog

-(2h (1-r; -r )HT-h)rHT-h )r, Il (1-g)+q,g]

3
1'5(5)= T6(5)=Tr4qog+T( 1—r3) [q3(1—g)+q4g]

N(6) = 3—r3-q0(1—g)—q1+(r3+r4)qog+(ro—r2+r3+r4-2)q4(1—g)

7,(6) =h, {la_+a,H(r +r))a, A1-g)H1-q)g b q,(1-g)+[h -(41/3) ]

{[q3+(r3+r4)q4 X 1-g)+q,g }-(am/3) [q3(1—g) +q4g:|
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To(6)=hg U1-rg -r,) g (1-g)+q, Iay(rqtr)g IHhgrath,r,) (g +q,)(1-g)+
a; Jhg-m {q2(1—g)+q3+[q0+q2(1—r3 - ,)+q, ]g}+{[h7—(47r/3) Ir +
(hy-2mr, }q4(1—g)
To(6)=(hg+2h ) U1-r, -r) g (1-g)+q, Iray+az+q +a)gd-milg +qy(1-ry -r )+
a, ]g+q3+q2(1—g) }+T {[r4qo+(ro+r4)q4 ](1—g)+r4q1 }
7,(6)= [T(1-r2-r3)+h4r2][qo(l-g)+q1]+(T-2h1)(1-r3-r4) [q2(1—g)+ Uq
q,8 JH(hgrath,r Y4y +d,+a,e) +T(r +r,)q,(1-g)+hg[q_+q,(1-ro-r ) Jg
T(6)=T(1-r.) la,(1-g)+qg+a,g +Tr q,g+(hg+2h ) [q_+a,(1-rs-r,) ]g
Te(6)=T(1-r) [q2+q3+q4g ]+(h4—T)r2q2g+[T+(h4—T)r3—2h1r4 ]qog

7'7(6)= T8(6)=Tr4qog

General expressions can be written for the parameters N and Ti form > 7.
It is convenient to introduce the integer M(m) defined as follows: M is equal

to N, if T2N—1 < T, and otherwise M is equal to N-1. Explicitly,

M = N—r4 [qo+q1+q4(1—g)+q2g ]—(1—r3) [q2(1—g)+q3+q4g ]—(ro+r1)q4(1—g),

and T2N—1 = T2N =T if M= N-1. With M defined in this way, the range of

the index i in the following expressions is 1 < i < M-1.
For n > 3;
N(2n+1)=n—r3—qo[(1—g)—(r3+r4)g]+Eq3-(1+r2-r3—r4)q4 X1-g)-(a;-q,)¢
T,(2n+1)= [h5—(n— 2)(4m/ 3) ][qo(l-g)+q1g ]+:Eh5—(n— 1)(4m/3) ][q2+(qo+ ag)gl+

h, [(a,+a5)(1-g)+q, ]
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rzi(2n+1)=h8+(i-n+1)1r+1r[(qo—q3)(1-g)+(q1-q4)gl T

Zi+l(2n+1)= ‘7'2i(2n+1)+2h1

N(2n+2)=N(2n+1)+q_+q,+(q,+q5)g

7,(2n+2)=h, [q_+q,+(q,+a)g 1 [h -(n-1)(47/3) U, +q,)(1-@)+[h -n (47/3)]
[az(1-g)+a e ]

Ty, (20+2)=T, (2n+1)-7lq_+q,+(q;+q,)g]

Toi4+1(20+2)=Ty,(2n+2)+2h

Also, forn 2> 17

T 0n) = [T(ro+rl)+h4r2][qo+q1+(q2_qo)g]+[T(1—r3)+h4r3—2h1r4 ]qog =
+ (hgrythr,)(1-q_g)H(T-2h )1-rg-r,) la,+q,+a,-q,)g ]

+ {lh,-(47/3) Ar +r))+Hh,-2mr, ] q,(1-g)

The above formulas give a complete explicit representation of the extremal

inputs for the problem considered.

CONCLUSIONS

The necessary conditions for an extremal input given in references 2, 3,
and 4 for problems with bounded phase coordinates were discussed with
respect to the problem at hand. These conditions give the result that an
extremal input is proportional to a signum function in which the argument
of the signum function is an adjoint solution. These conditions allow
discontinuities in the adjoint solution at certain junction points. The
necessary conditions of reference 5, interpreted for this problem show

that these discontinuities are not required. One discontinuity is required
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if it is desired that the adjoint represent any external normal to the set of
attainability. This discontinuity only occurs when the external normal is not
unique. It is shown that when the necessary conditions of reference 5 are

satisfied the sufficient conditions of reference 1 are satisfied.

These conditions imply that u(t) is an extremal input if and only if it can be
repre sented by equations (28) and (29) subject to the constraints (30) through
(35). In this representation the junction points and the discontinuity are
introduced as parameters. The constraints (30) through (35) are determining
equations and inequalities for these parameters. An example shows how these

constraints are used to determine these parameters.

The results are presented in tabular form for extremal inputs giving explicit

formulas for the necessary parameters.

Responses having an arbitrarily large number of arcs which lie on the phase
constraint boundary can be obtained from extremal inputs if the time interval
lo,T]is sufficiently long. In such a case the input tends to be in resonance
with the oscillator over an intermediate segment of the time interval. During
an initial segment the input seeks to get into the proper phase relationship
with the oscillator. A final segment of the interval is spent attaining the

proper terminal value for the input.
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SECTION 5
EXTREMAL BOUNDED-AMPLITUDE BOUNDED RATE INPUTS

This section considers the problem of determining extremal bounded-amplitude
bounded-rate inputs to linear stationary systems. The discussion will be re-

stricted to the case of a scalar input.
Consider a system represented by the vector differential equation:
x(t) = Ax(t) + bw(t) (1)

Here it is assumed that w(t) is a scalar input which is a continuous function
of time with a piece-wise continuous derivative w(t). It is also assumed that

|w(t)| and |v'v(t)| satisfy the constraints (2) and (3).
lwt)| < k (2)

lw(t)] < 1 (3)

The vector, x(t), is an n-vector representing the state (or response) of the
system and A and b are constant n x n and n x 1 inatrices, respectively. The
system is assumed to be initially at rest, i.e. x (0) =W (0) = 0. The input,
w(t), can be adjoined to the state of the system by introducing X4 1(t) = w(t)

and for convenience set w(t) = v(t). Then the system is represented by:

. A Db + o)
x= lool® 11V, x(0) = 0 (4)

where x represents the n + l-vector and the constraints are:
X, .1 0] <k (5)

lv (t)] <1 (6)
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for any T 2 0 the set of attainability, K(T), is defined as the set of all x(T)

rhich correspond to solutions of (4) subject to (5) and (6) for 0 <t <T,

his set is a closed, bounded, convex set in Euclidean ntl dimensional space.
nputs which give rise to boundary points of K(T) are defined to be extremal
nputs. Since K(T) is convex, it has the property that at any boundary point,

ay x.B(T), there is a hyperplane, T containing the boundary point which supports

I(T), i.e. There is a vector ¥ normal to Tsuch that ¥- [.XB (T) - x(T) 120

or any x(T) in K(T). Such a vector, ¥ will be called an external normal to

I(T) at Xn (T).

“hus, it is possible to interpret extremal inputs in the following way. On a

ime interval, [0, T] an extremal input gives rise to a response x(T) that is

iuch that the projection of x(T) on some vector ¥ is a maximum. Hence, if

~(t) in (1) is considered as a disturbance and if the significant effects of the
iisturbance can be described as linear combinations of the state of the system
.hen the worst disturbances are extremal inputs. The results obtained for the
problem of determining extremal inputs provide a means for evaluating the
performance index for a controller in the minimax problem with bounded - ampli-

tude, bounded-rate disturbances. A brief description of such a problem is as

follows:

Consider a system described by

~

x =Ax+bu+cw, x(0)=0, wi(0)=0

with u, the scalar control, a linear combination of the components of x and
w where w is a scalar disturbance that satisfies |w(t)| < k and |w(t) | < 1.
The closed loop system may be written inthe form of equation (4). For a

fixed time, T, the performance index of a controller u is given byCi(u) =max Ci(u)
1<i<s

with C i(u) = max |d(i) x(T)| where the maximum is taken with respect

to all allowable v's and a given set of row vectors, d(i), i=1, 2,...,s.
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With this problem in mind it is desired to develop an efficient computational
method to determine the maximum of the scalar product of a given vector,d,

and x(T) subject to the constraints (5) and (6).

In the following discussion the necessary and sufficient conditions for extremal
inputs will be given. Based on these conditions two computational algorithms
will be formulated. Then the results of a computer program derived from

one of these formulations will be discussed.

NECESSARY AND SUFFICIENT CONDITIONS

The necessary and sufficient conditions state that extremal inputs are signum
functions of appropriate adjoint solutions. The adjoint solutions are continuous
on the open interval (0, T) with a possible discontinuity at T. Determining
equations are derived for the junction times (times when the corresponding
extremal response enter or leave the phase constraint) and the discontinuity

if it occurs.

A discussion of the development of these conditions is given in the section on
extremal inputs for the harmonic oscillator. The results presented there are
written in terms of that specific problem. The generalization of those results

for problerns of the type considered here is as follows:

T
n(T) x (T) = / M+ (t) v(t) dt where 7M(t) is a row vector satisfying

< A b
n=-1n ] (7)
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hus a precise definition of an extremal input, Vo’ is that there exists a non-

rivial (continuous) solution 7N (t) of equation (7) such that [T n (t) Vo(t) dt =
1ax / T',n+1 (t) v(t)dt where the maximization is taken over all v(t) which
0 .

atisfy (5) and {6) for 0 <t <T with x _,(0) =0. A necessary and sufficient

ondition for v(t) to be an extremal input is that:

i) There exist a set of junction points 0 <71_< Ty <...<T <7, <T
i = <Q ¢t <t <
and setting T 0 such that g [x(t) ] <0 for Toi <t < Tgi+1 and

g [x(t)1=0 for 7 <t < i=0,1,...,q-1 where

2i+1 T i’

g x(1=lx (112 - k? ana

ii) there exists a (row) vector ¥(t) continuous on (0, T) such that

v(t) =sgn [¥ ()1 0<t<T (8)

where ¥ (t) satisfies:

. A b )
P(t) = $(t) +a (1) &t) grad g [x(t) ] (9)

(o] (o]
b

o

where {(t) =1/2 Qb(t)[ ]sgn Exn+1(t) Jand x(t) =1 of glx(t) 1=0

and X(t) =0if g [x(t) ] <0 and
iii) on each interval where g Lx(t) ] =0 the following inequality is satisfied

b

P(t) x 41 20 (10)

o
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Furthermore, ¥(T ) is an external normal to the set of attainability at the

point x(T), and if ¥ (T) is an external normal to the set of attainability at

<Y than anorh Af the firat n comnonanta af UTY ic amiial +0 +tha Aravrreananding
A\-L 7 LLAT 1L CTAawvlil vai LLIN., L1LLL OV 41 \/VL&LPUALCLLI{D AN Y\ 4L 7 s ) C\iua.L (AN LLLIC \JV-‘-J-CDPUL].ULILS
component of ¥ (T ) and
b1 (T) =9, (T)) if glx(t)] <0 (11)
and
- { - > ] =
(4 1 (D) ¥ 4 (T) Ix 1 (M>0ifgx(m) =0 (12)

Now suppose 7XT) is a given vector and v(T), 0 <t <T, is the corresponding
extremal input. Then there is a ¥ (t) satisfying (9) through (12) such that v (t)
and ¥(t) are related by equation (8). The functions 1(t) and ¥ (t) are related in
the following way if $(T) is chosen properly.

¥ (T) = NT) (13)

() =m (), 0<t<T,i=1,2, ..., n (14)
= - < < ;7 = -
a1 =m @ - (i) Ty o St S Tyiq, t 1, 2,...,q-1 (15)

= < < i = -
Y =0 s Toi1 St STy, 11,2, Lo.,q1 (16)

b =m0 +8 (T -n ()], Toq-2 St ST if Ty =T (D)

o =@ - (1) s Taq-2 St STaq i Tyooq <T (18)

_ X <T (19
t) = < < -
¢n+1( ) =0. P Toq-1St Taq if Toq 1
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”Un+1 () =0 , =T, ifT, < T (20)

¥

et © 5 My O+ 618, (T - D], Ty S t<T i Ty, <T  (21)

In equations (17) and (21) 6 is equal to zero if g[x(T)]< 0 and is equal to
one if g[x(T1 = 0.

Thus, if 7 (T) is given, the corresponding extremal input v(t) can be deter-
mined by finding Y(t). From equations (13) through (21) it is seen that ¥ (t)
can be found from n (t) if quantities q, 8, ¢n+l (T7) - Ny (T) and Ty

i=1, 2, ..., 2q are known. These quantities are not arbitrary and certain

determining equations and inequalities exist.

Recalling that v(t) = sgn [¢n+1 (t)] from equation (8) and that by definition
g [ x(1}] < 0 for T9i2 < t<T2i—1’ i=1, 2, ..., g, it is evident that the T

are constrained by the implicit inequalities:

t
'W(T21-2)+[ sgnn (T) - n(Tzi_l)]dT |<k, T2i—2<t< TZi-i (22)

T9i-2

Also the T; are constrained from (10) taking note of (14) by:

b
(Tg; = Toy ) WD N(D) 20, T,  StsT,, 121, 2, ..., g (23)

|
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where of course w(t) = w( TZi) and | W(TZi) | = k. From (11), (12), and (13)

follows the constraint:

6 w(r) In_, (1) -4 _,  (T7)]12> 0. (24)

Now for determining equations there are the obvious equations

lw(t,., ) 1=k, i=1, 2, ..., q. (25)

2i-1

From the continuity of ¢ (t) and equations (15) and (16) it follows that:

77(7'21)=77(72i+1) , 11,2, ..., g-2. (26)

Also from the continuity of ¥(t) and equations (16) and (17) one can obtain:

nn+1(72q—2) to wn-’-l(T-) - nn+1(T) I=0if T2q =T (27)

If T2q <T one can obtain from (20),(21) and the continuity of ¥(t) at T2q that
+ Ty - = =7 > : =
Mt 18Tag) ¥O 0¥ (T - m (M=o, 1f Toq =T > Tgq-1» then 8=1and

¢n+l (T _) =0 so that again nn+1 (Tzq) + 6 [¢n+1 (T ~) = nn_,_l (T) ] = 0-

Hence one obtains the equation:

- " - -
(T Toq-1 n_ 4 (Ty) +0 Ly, (TH-n (M=o, (28)
If T2q-l <T the continuity of ¥(t) at Tzq—l along with equations (16) and (18)
impllesn(‘rzq_z) =n (T.‘Zq—l)' Hence, one can write the equation:
(T - T2q—1) [ 77(72q_2) -n (T2q—1) l=0 (29)

94



The parameter 0is the following function of T - ToN'

1 if T -T =0

i - >
5= { 0 if T - Ty~ 0 (30)
2N

Equations (25) through (30) are determining equations for, q, Ti» 8, and
¢n+1 (T ) - ‘r;n+1 (T) subjecttothe constraints(22) through (24).

FORMULATION OF A COMPUTATIONAL ALGORITHM

The first computational algorithm is formulated as a nonlinear programn.ing
problem. The second algorithm is based on a finite sum approximation of the

integrals involved in the first formulation.

Equation (7) can be solved explicitly by determining the eigenvalues and eigen-

vectors of the matrix A. Hence nn+1 (t), 0 <t < T can be assumed known
explicitly as a function of t. A value for q can be chosen and then the integral
from 0 to T of the product 7_, (t) v(t) may be obtained as a function of T
i=1, 2,,,,2q, 6, and ¢n+1(T_) - M4 (T) by making use of equations (8)
and (13) through (21). That is,

T
/ N oW vi)ydt = J [-ri, 5, apn+1(T") —‘r7n+1(T)]. (31)

o)

The parameters, T 6, and ¢n+l (T7) - nn+l (T) are to be constrained by the

inequalities

vee <T < <
5 2q-1 3 Tzq <T (32)
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and the constraints (22) through (30). Then one can maximize J subject to the
constraints just cited. This is a mathematical programming problem. If q were
not chosen properly no solution would exist and q could be varied until a solution

exists.

There are major difficulties present in this method. To obtain J as a function
of the parameters shown it is necessary to be able to determine explicitly the
zeros of v(t). This is equivalent to solving transcendental equations explicitly

which is not generally possible. Also to obtain explicit constraints from (22)

thonniigh (20) the sornag Af vi+) muat he bnauwn avnlicritly Annthar mainr» nrahlam
Llu.uu.gu \dJUJ LIIT 4LT1LUD Ul YL/ LIlUuOo L T DIV WL CAH.LL\.;LLJ. LAILlIVLLLIC L LLLGJ\JJ. tJJ. VLT i1l
may be that it is not easy to determine whether a solution exists for a particular

value of q.

Because of the difficulties involved in the above method, an approximation to the
problem was made which leads to a linear programming problem. In essence,

the computational problem is to maximize the functional:

T
I(v) =/ N+ () vt dt (33)
O

over the function space of all piecewise continuous functions v (t) defined for

0< t < T and satisfying the constraints (5) and (6) for all t in the interval
0<t <T. Basic to the approach is a finite-sum approximation of the integrals,
which may be thought of a5 sampling' the integrands at a finite number of points.
S

Let m such sampling points, S 9’ . sm and m +1 auxiliary points ro, re

s T be chosen to satisfy:

0 =y <s <pr <s < ,,.<s < p =T (34)
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~t
0 approximate the integral,/ g(s) ds, for a given t, p is chosen so that
o

It - rp l < It - r, | and the integral is approximated by:

™Mo

glsy) (r; =73 4)
where g denotes anarbitrary piecewise continuous function.

It is desirable that the points of discontinuity of g are included in the auxiliary
points r.. The points of discontinuity of the integrands of interest are the points
of discontinuity of v(t). These points are unknown and hence only estimates of

them can be used.

The approximate problem to be solved is to maximize
m

s = Z 7

il 18 vis)) (rp-r. ) (35)

subjects to the constraints:

Iv(si) |<1 fori =1, 2, ..., m (36)
J

|2 v(s)(r,-r. )| <k forj=1,2, ..., m (37)
i=1 i i i-1

The linear programming formulation of this problem is, Given the points s. and r,

and the function nn +1° maximize the linear form:

M1 8 7y o) x (38)

m
L =2
- i

i=1
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in the m unkndwns X, subject to the 3m linear inequalities:

x, $ 2 (39)
J

i

i§1 (r1 ri—l) X, <k + r‘_j (40)
j

z L-(r, -, 1)x,]<k—r.. (41)

i=1 i i- i” — j

For this linear programming formulation non-negative unknowns X, = V(Si) +1

have been introduced.

A computer program has been written to solve this linear program with a maxi-
mum of 14 unknowns with equally spaced sampling and auxiliary times. Results

were obtained from this program for an example and they are presented below.

COMPUTER RESULTS

The example chosen is one for which the exact solution is known. The following

problem is considered. The system is: x * x =u, u =v, |V l <1, |u | < n/k

with | x(0) =x (0) =u(0) =0

The vector N(T) is (k) cos 6, (w/k) sin 6, (7/k) tan ¢J. The function
nn'*‘ 1 (t) is

n (t) = cos 8- cos (B8 +T -1t) +(7w/k) tan ¢.

n+tl
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Values of k, 8, ¥, and T are 4, 7 /8, 0 and 37 /2 respectively.

The exact solution to this problem is

r
-1 for 0 < t < mw/4
0 for /4 <t < 37/8 '
v(t) =¥ (42)
+1 for 3n/8 <t < 778
{ 0 for 7m/8 <t < 3n/2.

The value of the integral with this extremal input is (7 /4) cos (7/8) + 2 sin (7/4)
which is approximately 2. 1398. Approximate solutions to the problem were
found by using the computer program with the number of unknowns, m, equal to
8, 9, 10, 11, and 12. The resulting inputs along with a graph of nn+l(t) are
shown in Figure 12. The input obtained with m =12 is the same (to nine
significant figures) as the input given by (42). This happened because the allowed
breaks in v(t) for m = 12 include all the break points of the exact solution. The

values obtained for the approximated integral are:

2.1001 for m = 8,
2.1120 for m = 9,
2.1082 for m =10,
2.1150 for m =11,
2.1490 for m =12,

These results indicate that the approximation can be made adequate if enough
unknowns are introduced. However, for the present program, the computaﬁon
time increases rapidly with an increase in the number of unknowns. For exa"mple,

the computation time necessary to obtain the solutions in this case are:
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15 seconds form = 8

34 seconds form =9
58 seconds for m =10
91 seconds form = 11
132 seconds for m = 12.

Thus for more complicated problems this method may be too costly to use.

SUMMARY

Solutions to the problem of determining extremal bounded amplitude, bounded

rate inputs to linear stationary systems are presented. Necessary and sufficient
conditions for extremal inputs are given and a set of determining equations are
derived from these conditions. Certain constraints are also derived that must

be satisfied along with the determining equations.

A computational algorithm is formulated which exhibits what appear to be major
computational difficulties. A linear progrémming formulation of an approximation
to the problem is given along with computer results for an example. An adequate
approximation can be made with this formulation. But the computation time may

become excessive for an adequate approximation.
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