248 research outputs found

    The degree-diameter problem for sparse graph classes

    Full text link
    The degree-diameter problem asks for the maximum number of vertices in a graph with maximum degree Δ\Delta and diameter kk. For fixed kk, the answer is Θ(Δk)\Theta(\Delta^k). We consider the degree-diameter problem for particular classes of sparse graphs, and establish the following results. For graphs of bounded average degree the answer is Θ(Δk1)\Theta(\Delta^{k-1}), and for graphs of bounded arboricity the answer is \Theta(\Delta^{\floor{k/2}}), in both cases for fixed kk. For graphs of given treewidth, we determine the the maximum number of vertices up to a constant factor. More precise bounds are given for graphs of given treewidth, graphs embeddable on a given surface, and apex-minor-free graphs

    Distributed Dominating Set Approximations beyond Planar Graphs

    Full text link
    The Minimum Dominating Set (MDS) problem is one of the most fundamental and challenging problems in distributed computing. While it is well-known that minimum dominating sets cannot be approximated locally on general graphs, over the last years, there has been much progress on computing local approximations on sparse graphs, and in particular planar graphs. In this paper we study distributed and deterministic MDS approximation algorithms for graph classes beyond planar graphs. In particular, we show that existing approximation bounds for planar graphs can be lifted to bounded genus graphs, and present (1) a local constant-time, constant-factor MDS approximation algorithm and (2) a local O(logn)\mathcal{O}(\log^*{n})-time approximation scheme. Our main technical contribution is a new analysis of a slightly modified variant of an existing algorithm by Lenzen et al. Interestingly, unlike existing proofs for planar graphs, our analysis does not rely on direct topological arguments.Comment: arXiv admin note: substantial text overlap with arXiv:1602.0299

    Testing bounded arboricity

    Full text link
    In this paper we consider the problem of testing whether a graph has bounded arboricity. The family of graphs with bounded arboricity includes, among others, bounded-degree graphs, all minor-closed graph classes (e.g. planar graphs, graphs with bounded treewidth) and randomly generated preferential attachment graphs. Graphs with bounded arboricity have been studied extensively in the past, in particular since for many problems they allow for much more efficient algorithms and/or better approximation ratios. We present a tolerant tester in the sparse-graphs model. The sparse-graphs model allows access to degree queries and neighbor queries, and the distance is defined with respect to the actual number of edges. More specifically, our algorithm distinguishes between graphs that are ϵ\epsilon-close to having arboricity α\alpha and graphs that cϵc \cdot \epsilon-far from having arboricity 3α3\alpha, where cc is an absolute small constant. The query complexity and running time of the algorithm are O~(nmlog(1/ϵ)ϵ+nαm(1ϵ)O(log(1/ϵ)))\tilde{O}\left(\frac{n}{\sqrt{m}}\cdot \frac{\log(1/\epsilon)}{\epsilon} + \frac{n\cdot \alpha}{m} \cdot \left(\frac{1}{\epsilon}\right)^{O(\log(1/\epsilon))}\right) where nn denotes the number of vertices and mm denotes the number of edges. In terms of the dependence on nn and mm this bound is optimal up to poly-logarithmic factors since Ω(n/m)\Omega(n/\sqrt{m}) queries are necessary (and α=O(m))\alpha = O(\sqrt{m})). We leave it as an open question whether the dependence on 1/ϵ1/\epsilon can be improved from quasi-polynomial to polynomial. Our techniques include an efficient local simulation for approximating the outcome of a global (almost) forest-decomposition algorithm as well as a tailored procedure of edge sampling

    Energy Complexity of Distance Computation in Multi-hop Networks

    Full text link
    Energy efficiency is a critical issue for wireless devices operated under stringent power constraint (e.g., battery). Following prior works, we measure the energy cost of a device by its transceiver usage, and define the energy complexity of an algorithm as the maximum number of time slots a device transmits or listens, over all devices. In a recent paper of Chang et al. (PODC 2018), it was shown that broadcasting in a multi-hop network of unknown topology can be done in polylogn\text{poly} \log n energy. In this paper, we continue this line of research, and investigate the energy complexity of other fundamental graph problems in multi-hop networks. Our results are summarized as follows. 1. To avoid spending Ω(D)\Omega(D) energy, the broadcasting protocols of Chang et al. (PODC 2018) do not send the message along a BFS tree, and it is open whether BFS could be computed in o(D)o(D) energy, for sufficiently large DD. In this paper we devise an algorithm that attains O~(n)\tilde{O}(\sqrt{n}) energy cost. 2. We show that the framework of the Ω(n){\Omega}(n) round lower bound proof for computing diameter in CONGEST of Abboud et al. (DISC 2017) can be adapted to give an Ω~(n)\tilde{\Omega}(n) energy lower bound in the wireless network model (with no message size constraint), and this lower bound applies to O(logn)O(\log n)-arboricity graphs. From the upper bound side, we show that the energy complexity of O~(n)\tilde{O}(\sqrt{n}) can be attained for bounded-genus graphs (which includes planar graphs). 3. Our upper bounds for computing diameter can be extended to other graph problems. We show that exact global minimum cut or approximate ss--tt minimum cut can be computed in O~(n)\tilde{O}(\sqrt{n}) energy for bounded-genus graphs
    corecore