13 research outputs found

    Compositional competitiveness for distributed algorithms

    Full text link
    We define a measure of competitive performance for distributed algorithms based on throughput, the number of tasks that an algorithm can carry out in a fixed amount of work. This new measure complements the latency measure of Ajtai et al., which measures how quickly an algorithm can finish tasks that start at specified times. The novel feature of the throughput measure, which distinguishes it from the latency measure, is that it is compositional: it supports a notion of algorithms that are competitive relative to a class of subroutines, with the property that an algorithm that is k-competitive relative to a class of subroutines, combined with an l-competitive member of that class, gives a combined algorithm that is kl-competitive. In particular, we prove the throughput-competitiveness of a class of algorithms for collect operations, in which each of a group of n processes obtains all values stored in an array of n registers. Collects are a fundamental building block of a wide variety of shared-memory distributed algorithms, and we show that several such algorithms are competitive relative to collects. Inserting a competitive collect in these algorithms gives the first examples of competitive distributed algorithms obtained by composition using a general construction.Comment: 33 pages, 2 figures; full version of STOC 96 paper titled "Modular competitiveness for distributed algorithms.

    Stabilizing Byzantine-Fault Tolerant Storage

    Get PDF
    Distributed storage service is one of the main abstractions provided to developers of distributed applications due to its ability to hide the complexity generated by the various messages exchanged between processes. Many protocols have been proposed to build Byzantine-fault-tolerant (BFT) storage services on top of a message-passing system but none of them considers the possibility that well-behaving processes (i.e. correct processes) may experience transient failures due to, say, isolated errors during computation or bit alteration during message transfer. This paper proposes a stabilizing Byzantine-tolerant algorithm for emulating a multi-writer multi-reader regular register abstraction on top of a message passing system with n > 5f servers, which we prove to be the minimal possible number of servers for stabilizing and tolerating f Byzantine servers. That is, each read operation returns the value written by the most recent write and write operations are totally ordered with respect to the happened before relation. Our algorithm is particularly appealing for cloud computing architectures where both processors and memory contents (including stale messages in transit) are prone to errors, faults and malicious behaviors. The proposed implementation extends previous BFT implementations in two ways. First, the algorithm works even when the local memory of processors and the content of the communication channels are initially corrupted in an arbitrary manner. Second, unlike previous solutions, our algorithm uses bounded logical timestamps, a feature difficult to achieve in the presence of transient errors

    Asynchronous Consensus with Bounded Memory

    Get PDF
    We present here a bounded memory consensus Obstruction-Free algorithm for the asynchronous shared memory model. More precisely for a set of n processes, this algorithm uses n + 1 multi-writer multi-reader (MWMR) registers, each of these registers being of size O(log(n)) bits. Then we get a O(n log(n))-bits size complexity consensus algorithm with single-writer multi-reader (SWMR) registers and a O(n log(n))-bits complexity consensus algorithm in the asynchronous message passing model with a majority of correct processes. As it is easy to ensure the Obstruction-Free assumption with randomization (or with leader election failure detector) we obtain a bounded memory size randomized consensus algorithm and a bounded memory size consensus algorithm with failure detector
    corecore