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Abstract—Distributed storage service is one of the main ab-
stractions provided to developers of distributed applications due
to its ability to hide the complexity generated by the various
messages exchanged between processes. Many protocols have
been proposed to build Byzantine-fault-tolerant (BFT) storage
services on top of a message-passing system but none of them
considers the possibility that well-behaving processes (i.e. correct
processes) may experience transient failures due to, say, isolated
errors during computation or bit alteration during message
transfer. This paper proposes a stabilizing Byzantine-tolerant al-
gorithm for emulating a multi-writer multi-reader regular register
abstraction on top of a message passing system with n > 5f
servers, which we prove to be the minimal possible number
of servers for stabilizing and tolerating f Byzantine servers.
That is, each read operation returns the value written by the
most recent write and write operations are totally ordered
with respect to the happened before relation. Our algorithm is
particularly appealing for cloud computing architectures where
both processors and memory contents (including stale messages in
transit) are prone to errors, faults and malicious behaviors. The
proposed implementation extends previous BFT implementations
in two ways. First, the algorithm works even when the local
memory of processors and the content of the communication
channels are initially corrupted in an arbitrary manner. Second,
unlike previous solutions, our algorithm uses bounded logical
timestamps, a feature difficult to achieve in the presence of
transient errors.

Keywords-Distributed System;Self-Stabilization Byzantine
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I. INTRODUCTION

Cloud Computing is one of the most popular emerging tech-
nologies. In a nutshell, clouds offer to organizations (clients)
the possibility to store and access large amounts of data on
remote servers managed by providers such as Amazon, Yahoo,
or Google. The cloud model is very similar to the well known
client-server model. However, clouds experience both faults
and errors and are often the target of cyber attacks. Recently,
mainstream media reported the unavailability of various cloud
providers for several days due to multiple causes such as
software bugs, errors in internal migrations or cyber attacks.
It is now established that cloud storage systems must be
able to mask to their clients the unexpected yet possible
faults of processing entities, memory transient errors due to
internal storage reorganization, software bugs, or transient
or permanent cyber attacks. In these architectures, applying
the classical technique consisting in restarting the system

anytime an error or a fault is detected has an important impact
on the clients quality of experience and overall satisfaction.
In this context, fault and attack tolerant schemes occurring
in theoretical distributed computing are extremely relevant
for the daily practice of cloud computing, where important
properties such as availability, reliability, serviceability, and
fault-tolerance are mandatory. Typically, it is necessary to
combine both “classical” fault-tolerance techniques as well as
fault-recovery (that is, self-stabilization) to ensure the afore-
mentioned properties. On the one hand, self-stabilization [1],
[2] is a versatile technique that permits automatic recovery of
a system following the occurrence of transient faults. Note
that the automatic recovery addressed using self-stabilization
techniques does not need explicit human intervention nor the
stop and the reboot of the entire system. On the other hand,
fault-tolerance [3] is traditionally used as a term indicating
the potential of the system to tolerate a limited number of
permanent faults, the most severe being Byzantine faults,
where processing entities may deviate arbitrarily from their
intended behavior. Providing core building blocks for appli-
cation designers (such as consistent storage) that are highly
resilient to various kinds of faults and errors is essential for
cloud computing. However, making these systems tolerant to
both transient errors and permanent faults is a challenging task
since impossibility results are expected in many cases [4], [5],
[6], [7].

In this paper we propose the first multi-writer multi-reader
(MWMR) regular register emulation on top of a message
passing system that is tolerant to both Byzantine failures and
transient memory corruptions. Additionally, our solution uses
bounded timestamps which is also novel in the context of
the BFT implementations of regular registers. Our emulation
works under the assumption that the number of servers in the
system is n > 5f (where f is an upper bound on the number
of byzantine servers). Although, the proposed bound is higher
than the lower bound required to build a non stabilizing BFT
regular register (i.e. 3f + 1), this difference is due mainly to
the fact that temporarily the servers memory can be corrupted
and for a short time they may have a behavior that is similar
to Byzantine servers.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a distributed system composed of a set of n
servers S = {s1, s2, . . . , sn} emulating a shared memory, and
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a disjoint set of an unknown but finite number of clients
C = {c1, c2, . . . , ci, . . . } accessing the shared memory via
read and write operations. We consider that the system is
asynchronous and that processes may communicate only by
exchanging messages. Each pair of processes (both clients
and servers) is connected through reliable FIFO point to point
channels, i.e. messages are not created, modified or lost by
the channel and they are delivered following the FIFO order.
Note that, this behavior can be ensured by using a stabilization
preserving data-link protocol built on top of bounded, non-
reliable but fair, non-FIFO communication channels [8].
Failure Model. Any process in the distributed system may
fail: clients (readers and writers) can experience crash failures
and there is no bound on the number of faulty clients, while
servers can be Byzantine, i.e. they can deviate arbitrarily
from the protocol. We assume that at most f servers can be
Byzantine. In addition, both clients and servers can experience
transient failures (i.e. failures of finite duration) that result in
the corruption of their local state and channels contents (i.e.
the values stored in the local variables may be altered as well
as messages crossing channels). We assume that both clients
and servers can start their execution in a corrupted state and
these corruptions are transient and happen not too often to
prevent the convergence of the protocols.

A. Regular Register

A register is a shared variable accessed by a set of processes,
i.e. clients, through two operations, namely read() and write().
Informally, the write() operation updates the value stored
in the shared variable while the read() obtains the value
contained in the variable (i.e. the last written value). Every
operation issued on a register is, generally, not instantaneous
and it can be characterized by two events occurring at its
boundary: an invocation event and a reply (or return) event.
These events occur at two time instants (invocation time and
reply/return time) according to the fictional global time.
An operation op is complete if both the invocation event and
the return event occur (i.e. the process executing the operation
does not crash between the invocation and the reply). Contrary,
an operation op is said to be failed if it is invoked by a process
that crashes before the return event occurs. According to these
time instants, it is possible to state when two operations are
concurrent with respect to the real time execution. For ease
of presentation we assume the existence of a fictional global
clock (not accessible by processes) and the invocation time
and return time of every operation are defined with respect to
this fictional clock.
Given two operations op and op′, and their invocation event
times (tB(op) and tB(op

′)) and return times (tE(op) and
tE(op

′)), we say that op precedes op′ (op ≺ op′) iff tE(op) <
tB(op

′). If op does not precede op′ and op′ does not precede
op, then op and op′ are concurrent (op||op′). Given a write(v)
operation, the value v is said to be written when the operation
is complete (i.e. when the return event is generated for the
current operation).

MWMR Regular Register Specification. In case of con-
currency while accessing the shared variable, the meaning

of last written value becomes ambiguous. Depending on the
semantics of the operations, three types of registers have
been defined by Lamport [9]: safe, regular and atomic. In
this paper, we consider a multi-writer/multiple reader regular
register (defined in [10] and formalized in [11]):
• Termination: If a correct client invokes an operation op,

it eventually returns from that operation (i.e. it generates
a return event).

• Validity: A read operation returns the last value written
before its invocation, or a value written by a write
operation concurrent with it.

• Consistency: For any two read operations the set of
writes that do not strictly follow either of them must be
perceived by both reads as occurring in the same order.

In this paper, we are going to consider a multi-
writer/multiple-reader regular register and we will provide a
distributed protocol satisfying the following definition:

Definition 1 (f -BTPS [12]): A distributed protocol P is f -
Byzantine-tolerant and pseudo-stabilizing (f -btps for short)
for specification spec if and only if starting from any arbi-
trary configuration every execution of P involving at most f
Byzantine processes has a suffix satisfying spec.

III. A LOWER BOUND FOR PSEUDO STABILIZING
BYZANTINE TOLERANT REGULAR REGISTER

IMPLEMENTATION

In the following we prove that in the considered multi-fault
model the regular register cannot be implemented with n ≤ 5f
servers.

Note that it can be trivially proved that, when the system
starts in an arbitrary configuration, in the absence of a write
that completes successfully, read operations either return some
garbage value or never return. Therefore, in the following we
will make the assumption below.

Assumption 1: The first write operation that succeeds a transient fault
in the system does not stop until completed.

The following theorem shows the upper bound on the
number of faulty servers that any stabilizing protocol that
implements a regular register timestamping operations, with
one phase reads (no write back) and decision based on
majority of correct processes. The class of protocols is
denoted TM1R.

Theorem 1 (Upper bound on the number of faulty servers):
There is no asynchronous stabilizing protocol in the class
TM1R that implements regular registers with n ≤ 5f
servers in the presence of f Byzantine servers even when the
Assumption 1 holds.

Proof Consider a system with 5 servers one of which is
Byzantine. The generalization is trivial (each correct server is
replaced by a group of t servers). Assume there is a stabilizing
protocol A ∈ TM1R implementing BT regular registers. In
the following we denote by si the servers (i ∈ {1, .., 5})
and let s5 be the Byzantine server. Consider the following
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initial server configuration (tsx, tsx, tsx, ts2, tb) where tsx
and ts2 are timestamps of the correct servers corrupted by
some transient fault and tb denotes the timestamp of the
Byzantine server.

In the following we construct a possible execution of A,
e, that violates the regularity. Assume e stars in a config-
uration that immediately follows the first successful write,
w0. Assume that the timestamp introduced by this write is
ts0. Assume also that when w0 computed the ts0 timestamp,
timestamp ts2 > ts0 has not been included in the new
timestamp computation (server s4 was slow in responding).
That is, ts0 > tsx and ts0 > tb. Once w0 completes, the
configuration of the servers can be (ts0, ts0, ts0, ts2, tb). In
this configuration server s4 is slow and did not changed its
timestamp. The writer completed upon the confirmation of
servers s1, s2, s3 plus the Byzantine server. Consider now the
operation w1 (that happens after w0) and that introduces the
timestamp ts1 with ts1 > ts0 and ts1 > tb and ts1 < ts2.
Again, this is possible in A since s4 may be slow in sending
its timestamp to the writer. After, w1 completes, the servers
configuration can be (ts1, ts1, ts1, ts2, tb). A read operation,
r1, that happens after w1 can obtain the following multi-
set of timestamps {ts1, ts1, ts2, ts2} where the second ts2
is provided by the Byzantine server. Since A implements a
regular register, based on the above input, the read operation
should return the last written timestamp, namely ts1. Assume
now w2 that follows r1 and that introduces ts2. The server
configuration after w2 completes, can be (ts2, ts2, ts1, ts2, tb)
where server s3 is slow in modifying its timestamp. Finally,
consider the read r2 that happens after w2. r2 can obtain
the following multi-set of values {ts2, ts2, ts1, ts1} where
the second ts1 may come from the Byzantine server. Since
r2 collected exactly the same multi-set of values as r1,
then r2 has to return exactly the same value, namely ts1.
This contradicts the assumption that A implements a regular
register. That is, r2 was supposed to return the last written
timestamp, namely ts2. 2Theorem 1

IV. TIGHT PSEUDO STABILIZING BYZANTINE TOLERANT
REGULAR REGISTER IMPLEMENTATION

In this section, we propose and prove correct a BTPS
algorithm that implements regular register provided that the
number of servers n > 5f . The general idea of our algorithm
is similar to classical quorum-based approaches to implement a
BFT register [13], [14]. Both read() and write() operations are
performed by interacting with a set of servers (i.e. a quorum)
that is responsible to maintain the current value of the register
and to answer to read requests. The main issues we have to
face in the implementation are:

1) the asynchrony of the communications that makes pos-
sible to deliver messages related to the execution of an
operation op after the end of the operation;

2) the restriction to use only a finite set of labels to
timestamp different operations that forces clients to re-
use the same label to timestamp different operations;

3) the possibility of non-Byzantine servers to suffer transi-
tory failures when a client invokes an operation (i.e. they

are in a transitory phase where they can return wrong
information).

A. ToolBox

In asynchronous distributed systems, timestamps are used
to associate temporal information to events generated by
every process in absence of a fine grained synchronization
among physical clocks. Israeli and Li [15] define timestamps
as “numerical labels that enable a system to keep track
of temporal precedence relation among its data elements”.
There exist several labeling (or time-stamping) systems used
in distributed systems. An intuitive definition of a labeling
system follows. Labels are elements of a set enhanced with a
total antisymmetric binary relation (to compare labels) and a
function to compute a new label given a set of existing labels.
The simplest one is the set of natural numbers that allows
a total order but induces an unbounded memory. In order
to avoid this main drawback, Israeli and Li define bounded
labeling systems. Similar existing bounded labeling schemes
[15], [16], [17] do not tolerate the possibility of transient
faults, since there exists initial configurations from which it
is impossible to compute a new label.
In this paper, we consider the stabilizing bounded labeling
scheme defined by Alon et al. [18] to timestamp write()
operations. Such scheme ensures that given any subset of at
most k labels, there exists a label that dominates each label
of the input subset. Informally, this bounded labeling scheme
builds a partial order over the finite set of labels L and given
any pairs of labels `i, `j , it is always possible to decide if a
precedence relation exists among `i and `j or if they are not
comparable. More formally:

Definition 2 (k-SBLS [18]): A k-stabilizing bounded label-
ing system (k ≥ 2) is a triplet (L,≺, next()) where L is a finite
set, ≺ is an antisymmetric binary relation over L and next()
is a function next : Lk → L such that:

∀L′ ⊆ L, |L′| ≤ k ⇒ ∀` ∈ L′, ` ≺ next(L′).

Note that the precedence relation defined over the set of
labels is not transitive. Alon et al. [18] proved that there
exists a k-stabilizing bounded labeling system for any natural
number k.

In addition, due to the asynchrony, clients need to distin-
guish if the received pairs 〈value, ts〉 are replies for the current
read() or rather replies to an old read() operation that are
arriving late. To manage this issue, still using a finite set
of labels, we define a procedure (cf. Figure 3) executed by
the client every time it needs a label for a read(). More in
detail, we assume that every client ci can use a finite set of
labels LRi to identify its read() operations. For each label, the
reader stores the set of servers that have previously answered
to a read() using that label (meaning that, this label is no
more expected from the server) and the set of servers that
still miss a reply carrying out the current label. Examining
the obtained information, the client can pick up a free label
(if it exists) or it can try to verify if the missing response
is due to its bad initialization (i.e. client transitory phase). In
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order to do so, the client exploits the FIFO property of the
communication channels and send a FLUSH message to be
reflected by servers. Once the message came back either the
old reply has been received (i.e. the label can be now reused)
or the client’s knowledge was altered by a transitory failure
and the label can now be used.

To handle the transitory phase, we introduce the notion of
Weighted Timestamp Graph (WTsG). Informally, a WTsG is a
node-weighted directed graph where vertexes are represented
by write timestamps, the weight of the vertex is given by
the number of occurrences of the write timestamp and given
two vertex tsi, tsj there exists an edge in WTsG between
them if tsi precedes tsj in the timestamps partial order. More
formally:

Definition 3 (Weighted Timestamps Graph (WTsG)): Let
T = {ts1, ts2, . . . , tsk} be a set of timestamps. Let ≺ be the
precedence relation defined over T . A weighted timestamps
graph G = (V,E,w) is a graph where

• V is the set of different timestamps occurring in T ;
• E is the set of directed edges (i, j) such that (i) tsi, tsj ∈

T and (ii) tsi ≺ tsj ;
• w : V 7→ N is a function that assign to each timestamp in

V its occurrence in T (i.e. the number of times it appears
in T ).

In the following we use two different types of WTsG: (i)
local WTsG and (ii) union WTsG. The local WTsG is the
weighted graph obtained by every single server, considering
all the timestamps it is aware about while the union WTsG is
weighted graph obtained by every single server, considering
all the timestamps it is aware about (including the past ones).
The algorithm uses a WTsGs to infer if servers are in a
transitory phase (and then to abort the operation) or if the
current operation can be completed without violation of the
register specification. More in detail, when a client wants to
write a value v, it first inquiries servers to know the current
timestamps they store and then it uses such information to
compute a new timestamp that follows all the ones stored
locally by servers. Once the timestamp is available, the writer
performs the effective write on all the servers. In case of a
read() operation, the reader inquiries servers to obtain their
current values (together with their timestamps). Once it has
collected “enough” replies, it constructs the local WTsG using
the timestamps gathered through the replies and in case there
exists a value that is witnessed by a sufficient large set of
servers (i.e. for the case of our algorithm we need at least
2f + 1 witnesses), then it can return the value. If the local
WTsG does not include any value with enough witnesses, it
may happen that a write() operation is currently running. In
order to distinguish this case, the reader computes the union
WTsG considering both the current timestamp declared by
servers and a partial history of the last n written values that
each server knows. Looking at the union WTsG, the reader is
able to characterize whether a valid value exists in the system,
or servers are experiencing a transitory phase and the operation
can be aborted.

B. Single-Writer Multi-Reader Regular Register

In the sequel we provide a detailed description and the
complete pseudo-code of the single-writer multi-reader algo-
rithm. The extension to the multi-writer multi-reader will be
discussed in the next section.
Local variables maintained by every client ci. Each client
ci maintains the following local variables:
• serversi: is a set containing the the current list of servers

emulating the register;
• write tsi: is the last timestamp used by ci for a write()

operation;
• r labeli: is the label used to identify the current read()

operation;
• lasti: is the last label used to identify a read() operation;
• recent valsi[]: is an array of dimension n (where n is the

number of servers) where the j-th entry contains the list
of recent 〈value, timestamp〉 pairs received from sj . It
is used during the read() operation to build the timestamp
union graph used to verify if there exists a value occurring
“sufficiently enough” to be returned as the read value.

• acki: is a set variable used during the write() operation,
where ci collects acknowledgements from servers that
accept the written values as new;

• nacki: is a set variable used during the write() operation,
where ci collects non-acknowledgement messages from
servers that do not accept the written values as new;

• WTSi: is a set variable used during the first phase
of the write() operation, where ci collects the current
timestamps received from servers;

• readingi: is a boolean variable set to true at the begin-
ning of a read() operation and it is reseted to false at the
end.

• TSGi: is a complex data structure representing the
weighted timestamp Graph WTsG built by ci during the
read() operation;

• repliesi: is a set variable used during the read() operation
to collects 〈values, timestamp〉 pairs sent by servers;

• recent labelsi[][]: is an n× k boolean matrix (where n
is the number of servers and k is the maximum number
of labels that ci can use to identify its read() operation).
Such matrix is used by ci to select a label to identify
a read() operation and given the generic position (x, y),
it is equal to 1 if server sx is still processing operation
labeled by `y , 0 otherwise.

• safei: is a set variable used during read() operations and
it stores the identifiers of servers that are not using the
label selected for the current operation;

• slowi: is a set variable used during read() operations and
it stores the identifiers of servers that are using the label
selected for the current operation.

Local variables maintained by every server si. Each server
si maintains the following local variables:
• vi: it is the current value of the register stored locally by

si;
• tsi: is the current timestamp associated to the value.
• old valsi[]: it is a sliding arrays of n entries where

each server stores the last n written values. In particular,
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operation write(v):
(01) acki ← ∅; nacki ← ∅; WTSi ← ∅
(02) for each (j ∈ serversi) do FIFO send GET TS (i) to sj .
(03) wait until (|WTSi| ≥ n− f);
(04) write tsi ← Next(WTSi);
(05) for each (j ∈ serversi) do FIFO send WRITE (v, write tsi, i) to sj .
(06) wait until ((|acki|+ |nacki| ≥ n− f) ∧ (|acki| ≥ 2f + 1));
(07) return WRITE CONFIRMATION.
—————————————————————————————————-

when TS REPLY (ts, j) is received:
(08) if (∃〈−, j〉 ∈ WTSi) then for each (〈ts′, j〉 ∈ WTSi) do
(09) WTSi ← WTSi/{〈ts′, j〉};
(10) endFor
(11) endIf
(12) WTSi ← WTSi ∪ {〈ts, j〉};
—————————————————————————————————-

when ACK(ts, j) is received:
(13) if (〈ts, j〉 /∈ nacki) then acki ← acki ∪ {〈ts, j〉};
(14) else nacki ← nacki \ {〈ts, j〉};
(15) end if.
—————————————————————————————————-

when NACK(ts, j) is received:
(16) if (〈ts, j〉 /∈ acki) then nacki ← nacki ∪ {〈ts, j〉};
(17) else acki ← acki \ {〈ts, j〉};
(18) end if.

(a) Write Protocol: client side

when GET TS (j) is received:
(01) FIFO send TS REPLY (tsi, i) to cj ;
—————————————————————————————————-

when WRITE(v, ts, j) is delivered:
(02) if (tsi ≺ ts) then FIFO send ACK (ts, i) to cj ;
(03) else FIFO send NACK (ts, i) to cj ;
(04) endif
(05) old valsi[]← update(〈vi, tsi〉);
(06) tsi ← ts;
(07) vi ← v;
(08) for each 〈j, `j〉 ∈ running readi do FIFO send
REPLY (〈i, vi, tsi, old valsi[]〉, `j) to pj ;

(b) Write Protocol: server side

Figure 1: The Write Protocol for an asynchronous system

given the i-th entry of the array, it stores the pair 〈v, ts〉
corresponding to the i-th write operation occurred (if
exists) before than the current one, where v is the value
and ts the associated timestamp.

• running readi: is a set variable where each si stores
information related to read operations that it knows are
currently running. In particular, for any read, si stores a
pair 〈j, `j〉 where j is the identifier of the reader and `j
is the label associated to the current read.

Let us note that the size of last two variables is bounded.
In particular, the old valsi[]: array stores at most n pairs
〈v, ts〉 and the running readi set stores a number of pairs
〈id, lable〉 that is bounded by the number of clients that is
finite.

The write(v) operation (Figure 1). Before starting a write(v)
operation, the writer client cleans its local variable and then
inquiries all the servers, by sending a GET TS() message, to
know the set of current timestamps they actually store (line
05). Timestamps associated to write operations are computed
according to the labeling scheme described earlier in the
Section.

When a server receives the GET TS message, it just answers
by sending back its current timestamp.

Once the writer gets at least n−f answers, it computes the
timestamp for the current operation by invoking the Next()
function that returns a label grater than all the ones received

operation read(i):
(01) repliesi ← ∅;
(02) r labeli ← find read label(recent labelsi[][]);
(03) readingi ← true;
(04) for each (j ∈ safei) do
(05) FIFO send READ (r labeli, i) to sj .
(06) recent labelsi[j][r labeli]← 1;
(07) endFor
(08) wait until (|repliesi| ≥ n− f) ∧ (repliesi ⊆ safei);
(09) TSGi ← compute ts graph(repliesi);
(10) if (∃ node ∈ TSGi : node.weight ≥ 2f + 1)
(11) then readingi ← false;
(12) for each k ∈ safei do FIFO send COMPLETE READ(r labeli, i);
(13) return(node.value);
(14) else TSGi ←
(15) compute ts union graph(repliesi ∪ recent valsi[]);
(16) if (∃ node ∈ TSGi : node.weight ≥ 2f + 1)
(17) then return(node.value);
(18) else return abort;
(19) endif
(20) for each k ∈ safei do FIFO send COMPLETE READ(r labeli, i);
(21) readingi ← false;
(22) endif
——————————————————————————————————-

when REPLY(〈j, val, sn, old[]〉, label) is delivered:
(23) if (r labeli = label) then
(24) repliesi ← repliesi ∪ {〈j, val, sn, r sn〉};
(25) recent valsi[j]← old[];
(26) endif
(27) recent labelsi[j][label]← 0;

(a) Read Protocol: client side

when READ(`j , j) is delivered:
(01) running readi ← running readi ∪ {〈j, `j〉};
(02) FIFO send REPLY (〈i, vi, tsi, old valsi[]〉, `j) to pj ;
——————————————————————————————————-

when COMPLETE READ(`j , j) is delivered:
(03) running readi ← running readi \ {〈j, `j〉};

(b) Read Protocol: server side

Figure 2: The Read Protocol for an asynchronous system

(line 04). Once the timestamp is available, the writer client
sends a WRITE message to all the servers and waits until it
receives at least n− f answers, where at least 2f +1 of them
must be acknowledgment to the write, and then returns from
the operation.

Delivering the WRITE() message, every server checks if the
timestamp of the operation follows the local one according
to the precedence relation ≺ and if it is so, it sends back an
ACK message. On the contrary, it just sends back a NACK
message. In any case, any server updates its local copy of
the register, the local timestamp and the set of old values by
shifting the previous stored one. Finally, the server forwards
the new written value to all the concurrent readers stored in
the running readi variable.

The read() operation (Figure 2). Before starting a read()
operation, a client resets its repliesi local variable and tries
to get a suitable label among the bounded set it is able to use
(cf. find read label() function description).
Once the label for the current read() operation is available, the
reader ci sends a READ() message to all the servers whose
identifier is stored in the safei variable1 and at the same

1Let us note that such set is updated by the find read label procedure with
the identifiers of servers that have no more pending messages labeled with
the current label.
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procedure find read label(used label[][]):
(01) currenti ← select `j ∈ L \ lasti;
(02) safei ← ∅;
(03) for each (sk ∈ serversi);
(04) FIFO send FLUSH (`j) to sk;
(05) endFor
(06) wait until

∑n
k=1 used label[k][j] > f ;

(07) for each (k : used label[k][j] = 0)
(08) do used label[k][j]← 1;
(09) endFor
(10) lasti ← `j ;
(11) return lasti;

————————————————————————-
when FLUSH ACK (label, k) is delivered:
(12) used label[k][label]← 0;
(13) if (label = currenti)
(14) then safei ← safei ∪ {j};
(15) if (readingi)
(16) then FIFO send READ (label, i) to sj .
(17) used label[k][label]← 1;
(18) endif
(19) endif

(a) Client Protocol

when FLUSH(label) is delivered from cj :
(01) FIFO send FLUSH ACK (label, i) to cj ;

(b) Server Protocol

Figure 3: The find label() procedure for an asynchronous
system

time, it updates the recent labelsi matrix accordingly (line
06, Figure 2(a)) and remains waiting until it gets a reply from
at least n− f servers belonging to the safei set.

Delivering a READ message, every server sk adds ci to the
list of running readers and replies by sending back its local
copy of the register together with its timestamp and its list
of recent write operations through a REPLY message (line 02,
Figure 2(b)).

Delivering a REPLY(〈j, val, sn, old〉, `j) message from a
server sk, ci first checks if the received message is a reply for
the current read and if it is so, it stores the received information
locally (lines 23 - 26, Figure 2(a)). Then, it updates the
recent labelsi data structure to remember that server sj has
answered to a read() operation identified by `j (line 27, Figure
2(a)).

When the client is unblocked from the wait statement in
line 08, it computes the local timestamps graph obtained
by considering the timestamps collected in the repliesi set
and it looks if in the graph exists at least one node with
weight at least 2f + 1 (line 10, Figure 2(a)). If it is so, the
corresponding value is returned, otherwise the union WTsG
is computed by using both the timestamps collected with
replies and the old ones received so far form servers (line 15,
Figure 2(a)). Also in this case, the client looks if in the graph
exists at least one node with weight at least 2f + 1 and if
so, it returns the corresponding value, otherwise it aborts the
read operation. Finally, it sends a COMPLETE READ message
to any server to let them know that it is no more reading.

The find read label() Procedure (Figure 3). This procedure
is used during the read() operation to find a label to distinguish
the current read() from previous ones. The basic idea is to

exploit the FIFO property of the communication channels
inducing a message pattern that allows the client to understand
when it can re-use a certain label. In particular, the procedure
first selects a label `j , different from the last one used in
the previous read() (line 01, Figure 3(a)), then it sends a
FLUSH(`j) message to every server and finally it waits until
the column of the recent labelsi[][] corresponding to the label
`j contains less than f entries set to 1 (line 06, Figure 3(a)).

Delivering the FLUSH message, each server sk just answers
with a FLUSH ACK message by sending back the label together
with its id (line 01, Figure 3(b)).

Delivering a FLUSH ACK(label, k) message, ci updates its
recent labelsi[k][label] to 0 (line 12, Figure 3(a)) and then
it checks if the received message is associated to the current
flush procedure (line 13, Figure 3(a)). In positive case, sk is
added to the set of safe servers that can participate to the
read() operation labeled by `j (line 14, Figure 3(a)) and in
case the read() operation is still running, it proceeds sending
a read request to sk (and flagging again the label `j as used).

C. Correctness Proof

In the following we prove the correctness of our protocol
under the following assumptions:

Assumption 2: Write operations are quiescent, i.e. after a burst of
write() operations executed by the writer, there exist a sufficiently long
period where the writer does not take any operation.

Let us note that the first assumption guarantees that the
algorithm works with a finite memory space bounded by the
length of the write() operations burst. Such memory is in fact
required by servers to store the history of write() operations
and manage continuous writes performed by a fast writer (cf.
old valsi[] variable). In the absence of this assumption, the
labels may wrap around several times without the reader being
able to distinguish between labels introduced by the writer at
different moments.

Informally the correctness proof of the algorithm presented
in Figures 1 - 2 goes as follows :

• Termination. For both read() and write() operations, the
termination of the protocol depends on the reception
of n − f replies/acknowledgments carrying out the
timestamp associated to the operation.
Concerning the timestamp attached to a write() operation,
it is possible to observe that it is computed starting from
a subset of n − f timestamps stored by servers. As a
consequence, the write timestamp will be greater than
them and can be recognized and counted by the client
that stores locally old timestamps.
Concerning the timestamp attached to a read() operation,
it is possible to observe that a label `i can be used only
after the reader is sure that it is no more used by at least
n− f servers. Considering that the number of Byzantine
servers is bounded by f , we have that at least n − f
servers will eventually answer to the client and it will
receives such number of replies letting the operations
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terminate.

• Validity. Concerning the validity of a read() operation, it
is obtained (as in classical BFT register implementation)
by leveraging on the presence of at lest 2f + 1 correct
processes with the last value in every intersection of
quorums that have acknowledged the last write() and
the current read().

• Pseudo-stabilization. The pseudo-stabilization property
follows from the fact that when the first write() oper-
ation terminates correctly, at least 3f + 1 correct servers
updated their local state. Thus, from the end of the first
write(), a majority of servers cleaned up its corrupted
state and any following read() is able to return a valid
value.

In the following we present the detailed proof.

Lemma 1: Let (L,≺, next()) be a k-stabilizing bounded
labeling scheme used in the algorithm in Figures 1 - 2. If
n ≥ 5f +1, then every write operation eventually terminates.

Proof Assume that there is a write() operation that does not
terminate. A client may be blocked in line 03 and line 06.
Let us note that since faulty servers are at most f , any client
will always receive at least n − f answer and thus, the only
line where the writer is blocked is in line 06 where the writer
waits for a number of acknowledgements. This implies that the
writer didn’t receives the 2f+1 acknowledgements (line 03 in
the client code). Note that the write operation has two phases.
In the first phase the writer receives at least 4f +1 labels that
are used to compute the next label. In this set there are at least
3f + 1 labels sent by correct processes. The writer computes
the next on this set then diffuses the next value and waits for
at least 4f+1 replies. Since the number of processes is 5f+1
and the number of Byzantine processes is f , the writer receives
at least 4f +1 replies as follows : at least 2f +1 that send an
ACK (these processes are correct and participated in the first
phase), f Byzantines that may send a NACK (even if their
labels have been included in the computation of the next label
in the previous phase) and f correct that may send a NACK
since their labels have not been included in the first phase of
the write(). It follows that at least 2f + 1 processes send an
ACK hence the write operation does not block. 2Lemma 1

Lemma 2: Let (L,≺, next()) be a k-stabilizing bounded
labeling scheme used in the algorithm in Figures 1 - 2. Let
op be a write(v) operation terminated at some time t labeled
with the timestamp tsv ∈ L. If n ≥ 5f + 1 then at time t
there exists at least 3f +1 servers storing the value v and the
label tsv .

Proof Any write operation has two phases. Following the
behavior of Byzantine servers in each phase we can distinguish
several scenarios:

1) Byzantine nodes reply in both phases. In this case at
least 3f +1 correct processes sent their timestamps that

are included in the computation of the new timestamp.
That is, the new timestamp is greater than the times-
tamps of at least 3f+1 correct processes. In the second
phase the Byzantine nodes can reply either by NACK or
by ACK. It follows that at least 3f+1 replies come from
correct processes. Over the at least 3f +1 replies either
the timestamps of these processes have been included in
the computation of the next timestamp hence all these
processes replied with an ACK and changed their local
timestamp to the new one or at least 2f + 1 replied
with an ACK and changed their local timestamp and f
replied with NACK and changed to the new timestamp.
Overall, 3f +1 correct servers store the new timestamp.

2) Byzantine nodes do not reply in the first phase but reply
in the second phase. In this case in the first phase at
least 4f + 1 replies come from correct processes (all
correct processes in the system). The new timestamp
is greater than any timestamp of these processes. In
the second phase, at least 3f + 1 responses come from
correct processes that reply with ACK and adopt the new
timestamp.

3) Byzantine nodes reply in the first phase but not in
the second phase. In this case, the new timestamp
computation includes the value of the timestamps from
at least 3f + 1 correct processes. In the second phase,
4f + 1 processes are waited and all of them adopt the
new timestamp.

4) Byzantine nodes simulate crash in both phases. This case
is similar to the second item. In both phases at least
4f + 1 correct processes reply and all of them reply
with an ACK message.

Overall, after a write operation for a value v with the
timestamp tsv the value v with the timestamp tsv is stored
in at least 3f + 1 servers. 2Lemma 2

Lemma 3: Let (L,≺, next()) be a k-stabilizing bounded
labeling scheme used in the algorithm in Figures 1 - 2. If
n ≥ 5f + 1, then the find read label() procedure in Figure 3
eventually returns a label `i ∈ L.

Proof Let us suppose by contradiction that there exists a
client ci invoking the find read label() procedure and that
such procedure never returns a label `j ∈ L. It implies that ci
never executes line 09 and it remains blocked in the waiting
state in line 06. it follows that in the used label[][] matrix,
the column corresponding to the current selected label always
contains more that f entries equal to 1. The client modifies
the used label[][] matrix by setting the entry (k, j) to 0 when
(i) it receives a REPLY message from server sk containing the
label `j (cf. line 27, Figure 2) or (ii) it receives a FLUSH ACK
message from server sk containing the label `j (cf. line 12,
Figure 3).
Thus, if the procedure does not return a label, it follows that
ci never receives “enough” REPLY and FLUSH ACK messages.
A FLUSH ACK message is sent by any correct servers si when
it delivers a FLUSH(`j) message that is sent by the client, at
the beginning of the procedure (in line 04), to every server.
Considering that channels are FIFO, messages are not lost and
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op

FLUSH (j)
FLUSH_ACK (j, k)

READ (j, i)

REPLY (<k, vk, tsk> , j)

used_label [k][j] = 1

used_label [k][j] = 0

COMPLETE_READ (j, i)

ci

safei ⊆ k

REPLY (<k, vk, tsk> , j)

used_label [k][j] = 0

Figure 4: Projection of read() operation events at client ci.

correct servers are at least n − f , it follows that eventually
all correct servers triggered by the client answer with a
FLUSH ACK message that, in turns, triggers the used label[][]
matrix update and the claim follows.

2Lemma 3

Lemma 4: Let (L,≺, next()) be a k-stabilizing bounded
labeling scheme used in the algorithm in Figures 1 - 2. If
n ≥ 5f + 1, then when the find read label() procedure in
Figure 3 terminates, |safei| ≥ n− f .
Proof Note that by lemma the procedure find read label()
always returns. The claim simply follows by observing that,
for any execution of the find read label() procedure when
a label `j is selected, (i) the client ci sends a FLUSH(`j)
message to any server in the system, (ii) any correct servers sk
eventually replies with a FLUSH ACK(`j , k) message, (iii) the
variable safei is filled in by the client ci with the identifier
of any server sk sending a FLUSH ACK(`j , sk) message (line
13, Figure 3) and (iv) correct servers are n− f . 2Lemma 4

Lemma 5: Let (L,≺, next()) be a k-stabilizing bounded
labeling scheme used in the algorithm in Figures 1 - 2 Let
ci be a client issuing a read() operation opr. Let `j be the
label returned by the find read label() procedure in Figure 3
at some time t and used by ci during opr. Let S ⊆ safei be
the subset of correct servers that participate in opr. For any
sk ∈ S, there not exist a REPLY (〈k, vk, tsk〉, `j) message,
generated by a read() operation op′r preceding opr, that must
be delivered by ci after time t.
Proof Let us suppose by contradiction that there exists a
correct server sk ∈ S that delivers a REPLY (〈k, vk, tsk〉, `j)
message, generated by a read() operation op′r preceding
opr, after time t and that op′r and opr are identified by
the same label `j . Note that if sk ∈ S then ci delivered a
FLUSH ACK(`j , k) message before time t. Thus, if the REPLY
(〈k, vk, tsk〉, `j) message exists, its delivery to ci follows
(according to the happened-before relation) the delivery of
the FLUSH ACK(`j , k) message triggered by the current read
operation opr.

Let us consider the events generated by a read() operation
at a client ci (shown in Figure 4) and the following facts:

1) for any read() operation op executed by ci, the send of
a FLUSH(`j) message to a server sk precedes, accord-
ing to the happened-before relation, the delivery of a
FLUSH ACK(`j , k) message from sk (cf. Figure 3).

2) if sk ∈ S, then ci delivered a FLUSH ACK(`j , k)
message before time t (cf. line 13, Figure 3);

3) for any read() operation op executed by ci, the delivery
of a FLUSH ACK(`j , k) message (and the insertion of
sk in the safei variable) precedes, according to the
happened-before relation, the send of a READ(`j , i)
message (cf. line 05, Figure 2);

4) for any read() operation op executed by ci, the send of a
READ(`j , i) message to a server sk precedes, according
to the happened-before relation, the delivery of a REPLY
(〈k, vk, tsk〉, `j) message from sk (cf. Figure 2).

Due to facts 1-4, given two read() operations op′r and opr
such that op′r precedes opr, the READ(`j , i) message sent
by op′r precedes, according to the happened-before relation,
the FLUSH(`j) message sent by opr. Therefore, considering
that channels connecting ci and sk are FIFO, it follows that
necessarily sk first sends a REPLY (〈k, vk, tsk〉, `j) for op′r
and later sends a FLUSH ACK(`j , k) message as reaction to
the FLUSH(`j) sent during opr and the claim follows.

2Lemma 5

Lemma 6: Let (L,≺, next()) be a k-stabilizing bounded
labeling scheme used in the algorithm in Figures 1 - 2. If
n ≥ 5f + 1, then any read() operation invoked on the regular
register eventually terminates.
Proof Assume that the read() operation does not terminate.
This implies that the reader didn’t get at least n−f safe labels,
which is impossible according to Lemma 4. 2Lemma 6

Lemma 7: Let (L,≺, next()) be a k-stabilizing bounded
labeling scheme used in the algorithm in Figures 1 - 2. Let op
be a write(v) operation terminated at some time t and let op′

be the first write() operation starting after op. If n ≥ 5f + 1
then any read() operation starting at some time t′ > t returns
either the last value written or a value concurrently written.
Proof From Lemma 6 every read eventually returns
(terminates). Assume the read operation always aborts. We
examine in the following two scenarios:

Scenario 1: no write is concurrent with the read operation.
Let op be the last write that happen before the current read
for the value v with the timestamp tsv . From Lemma 2
〈v, ts〉 is stored in at least 3f + 1 servers. The client waits
until it receives at least 4f + 1 replies from safe servers.
Over the 4f +1 , f may come from Byzantine servers and at
least 3f + 1 from correct servers. Over these correct servers,
following Lemma 2, at most f servers do not have the same
value. It follows that there exists a node in the TS graphi

that has the weight at least 2f + 1. Hence, the read operation
returns a non abort value and this value is the last written
value.

Scenario 2: one or several write operations are concur-
rent with the read operation. The client waits for at least
4f + 1 servers replies. f of them may come from Byzantine
processes. It follows that at least 3f + 1 come from correct
servers. Assume that w0 is the last write before the current read
and w1, w2, . . . wk are k concurrent writes. Since wk started
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then the values written by w0 . . . wk−1 are stored in at least
3f + 1 correct servers either in the current timestamp or in
the old values vector. Hence, there is at least a node in the
TS graphi computed over the replies that has a node with
the weight at least 2f + 1. The value returned is either w0 or
one of the values in the set w1, w2, . . . wk.

From above we can conclude that the read operation even-
tually does not abort and the returned value is always either
the last written value or a concurrent write.

2Lemma 7

Theorem 2: Let A be the algorithm presented in Figures
1 - 2. If the labeling scheme (L,≺, next()) used in A is a
k-stabilizing bounded labeling scheme and n ≥ 5f + 1 then
A is f -Byzantine tolerant and is a pseudo-stabilizing SWMR
regular register implementation.
Proof The proof follows directly from Lemma 7 2Theorem 2

D. Multi-Writers Multi-Reader Regular Register

The protocol proposed in the previous section implements
the multi-writer multi-reader regular register with the follow-
ing modification: each value written by a writer is associated a
tuple (id, timestamp) where id is the identity of the writer and
timestamp is a k-bounded label. In the following we prove that
two consecutive (in the sense of the happened before relation)
or concurrent write operations can be totally ordered. More
specifically, we prove that write operations can be ordered as
if they were issued by a single writer.

Lemma 8: Let A′ be the algorithm presented in Figures
1 - 2 with the above modification. In any execution of A′
concurrent or consecutive write operations are totally ordered.
Proof The use of identifiers and the bounded labeling scheme
ensures that concurrent write operations can be totally ordered.
Consider now w1 and w2, two consecutive operations, such
that w1 ends before w2 begins and no other write operation
is executed between w1 and w2. Let ts1 be the timestamp of
w1. The timestamp of w2 is computed after w2 invoked the
read of existing timestamps. Since w1 already completed, the
timestamp written by w1 is acknowledged (either with an ack
or with a nack) by at least 3f + 1 correct servers. When w2
starts gathering timestamps, it will wait until it gets at least
n − f replies. Over these 4f + 1 timestamps: f can come
from the byzantine servers, f from servers that haven’t yet
ack/nack the w1 value (so they may have a different value)
and 2f + 1 timestamps from servers that already store ts1.
Hence, the timestamps computed by w2 is greater than ts1.

2Lemma 8

Theorem 3: Let A′ be the algorithm presented in Figures 1
- 2 with the above modification. If the labeling scheme (L,≺
, next()) used in A′ is a k-stabilizing bounded labeling scheme
and n ≥ 5f + 1 then A′ is f -Byzantine tolerant and is a
pseudo-stabilizing MWMR regular register implementation.
Proof The proof follows directly from Theorem 2 and Lemma
8. 2Theorem 3

V. RELATED WORKS

Traditional solutions to construct Byzantine-tolerant storage
can be divided into two categories: replicated state machines
[19] and Byzantine quorum systems [20], [10], [21]. Repli-
cated state machines typically use 2f + 1 server replicas
and require that every non-faulty replica agrees to process
requests in the same order [19]. Quorum systems, introduced
by Malkhi and Reiter [10], do not rely on any form of
agreement. They only need that relevant subsets of the replicas
(i.e. quorums) are involved simultaneously. The authors pro-
vide a simple wait-freedom implementation of a safe register
using 5f servers. A protocol for implementing a single-writer
and multiple-reader atomic register that ensures wait-freedom
using only 3f + 1 servers was later proposed [13]. This is
achieved at the cost of longer (two phases) read and write
operations. Finally, a multi-writer multi-reader regular register
using 3f +1 servers and unbounded timestamps was recently
proposed [14].

In the context of self-stabilization, to the best of our
knowledge, no previous work addresses the problem of simu-
lating registers despite both Byzantine behaviors and memory
corruption. However, the simulation of crash tolerant and self-
stabilizing registers has been extensively studied. The self-
stabilizing simulation of an atomic single-writer single-reader
shared register in a message-passing system was proposed
for the fist time by Dolev et al. [22]. This simulation does
not consider that crash faults of processors may occur in
the system during execution. In a different context (simula-
tion of shared registers using shared registers with weaker
properties [23], [24]), researches focused on self-stabilizing
regular and safe registers implementation, and still did not
consider permanent or intermittent failures. Alon et al. [25]
introduced a crash-fault tolerant and “practically” stabilizing
scheme for simulating atomic memory in a message passing
system is presented. There, practically means that the system
reaches a long enough period, that can be regarded as infinite
for all purposes, in which interesting properties such are
linearizability are guaranteed. Strictly, in every infinite execu-
tion suffix, linearizability is violated infinitely often, leaving
open the question of suffix-closed linearizability guaranteeing
algorithms that are both stabilizing and fault tolerant. Later,
Dolev et al. [26] introduced a pseudo-stabilizing simulation
of atomic registers for slightly weaker properties that is also
tolerant to crash faults. None of the aforementioned works
addresses the possibility of Byzantine behaviors.

VI. CONCLUDING REMARKS

This paper addressed the problem of emulating a shared
memory, i.e. a register, offering the multi-writer multi-reader
regular semantics in the presence of both Byzantine servers
and possible initial corruption of correct ones. Additionally,
reader clients can crash at any time while writer clients can
crash at any moment if the correct servers are not in a transient
phase and only after the first write completes correctly if
servers are hit by transient errors. Moreover, clients (readers
and writers) can be hit by transient errors at any moment.
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We provided an optimal stabilizing algorithm that is able to
correctly implement a MWMR regular register abstraction as
soon as the number of servers responsible for the variable
management is n > 5f (where f is an upper bound on
the number of Byzantine servers). In particular, the algorithm
ensures that when transient faults hit the system, after the first
write() operation completes, any subsequent read() eventually
returns a value satisfying the regular semantics.
To the best of our knowledge, this is the first work on shared
memory implementation dealing with both Byzantine failures
and transient failures, enabling the possibility that every server
may fail in some way. Let us note that transitory failures
represent a particular case of Byzantine failures. However, we
showed that distinguish among the two types and consider
them separately, makes possible to provide an implementation
able to tolerate f Byzantine servers and n servers suffering
transitory failures by deploying n ≥ 5f+1 servers. Let us note
that, even though the number of server replicas (i.e. 5f +1) is
greater than the lower bound required to build a BFT regular
register (i.e. 3f+1), we prove that this is a tight bound needed
to cope with asynchrony, the combination of two different
failure models and possible failures of the writer process that
can leave the system in an inconsistent state.

Moreover, we conjecture that our assumption on the quies-
cence of write() operations is necessary in order to achieve
pseudo-stabilization with bounded timestamps in the con-
sidered multi-fault model. This conjecture is based on the
asynchrony and the impossibility for the reader client to know
whether stabilization is achieved. In fact, in order to define
a termination condition for read() operations, we need to
allow the reader to reason over a set of values (i.e. the whole
history of the writes in case of infinite memory or the last k
write operations in case of quiescence) otherwise it will not
be able to distinguish if the different states it perceives from
servers are due to the transitory phase (all different values due
to corrupted initial states) or to the writer that continuously
updates the last written value.

Finally, note that when reader clients are Byzantine our
protocol still verifies the MWMR regular register specification.
That is, the read protocol is performed in one phase so
Byzantine readers cannot modify the value and the timestamp
maintained by the correct servers.
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