228,800 research outputs found

    Nearly Conformal QCD and AdS/CFT

    Full text link
    The AdS/CFT correspondence is a powerful tool to study the properties of conformal QCD at strong coupling in terms of a higher dimensional dual gravity theory. The power-law falloff of scattering amplitudes in the non-perturbative regime and calculable hadron spectra follow from holographic models dual to QCD with conformal behavior at short distances and confinement at large distances. String modes and fluctuations about the AdS background are identified with QCD degrees of freedom and orbital excitations at the AdS boundary limit. A description of form factors in space and time-like regions and the behavior of light-front wave functions can also be understood in terms of a dual gravity description in the interior of AdS.Comment: 8 pages, LateX, 3 figures. Presented at First Workshop on Quark-Hadron Duality and the Transition to pQCD, Frascati, Italy, 6-8 June 2005. AdS LFWF mapping reexamine

    Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine

    Get PDF
    Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations

    Surface-tension-driven Stokes flow: a numerical method based on conformal geometry

    Get PDF
    AbstractA novel numerical scheme is presented for solving the problem of two dimensional Stokes flows with free boundaries whose evolution is driven by surface tension. The formulation is based on a complex variable formulation of Stokes flow and use of conformal mapping to track the free boundaries. The method is motivated by applications to modelling the fabrication process for microstructured optical fibres (MOFs), also known as “holey fibres”, and is therefore tailored for the computation of multiple interacting free boundaries. We give evidence of the efficacy of the method and discuss its performance

    Non-classical Rotational Inertia in a Two-dimensional Bosonic Solid Containing Grain Boundaries

    Full text link
    We study the occurrence of non-classical rotational inertia (NCRI) arising from superfluidity along grain boundaries in a two-dimensional bosonic system. We make use of a standard mapping between the zero-temperature properties of this system and the statistical mechanics of interacting vortex lines in the mixed phase of a type-II superconductor. In the mapping, the liquid phase of the vortex system corresponds to the superfluid bosonic phase. We consider numerically obtained polycrystalline configurations of the vortex lines in which the microcrystals are separated by liquid-like grain boundary regions which widen as the vortex system temperature increases. The NCRI of the corresponding zero-temperature bosonic systems can then be numerically evaluated by solving the equations of superfluid hydrodynamics in the channels near the grain boundaries. We find that the NCRI increases very abruptly as the liquid regions in the vortex system (equivalently, superfluid regions in the bosonic system) form a connected, system-spannig structure with one or more closed loops. The implications of these results for experimentally observed supersolid phenomena are discussed.Comment: Ten pages, including figure
    • …
    corecore