99 research outputs found

    A fast and well-conditioned spectral method for singular integral equations

    Get PDF
    We develop a spectral method for solving univariate singular integral equations over unions of intervals by utilizing Chebyshev and ultraspherical polynomials to reformulate the equations as almost-banded infinite-dimensional systems. This is accomplished by utilizing low rank approximations for sparse representations of the bivariate kernels. The resulting system can be solved in O(m2n){\cal O}(m^2n) operations using an adaptive QR factorization, where mm is the bandwidth and nn is the optimal number of unknowns needed to resolve the true solution. The complexity is reduced to O(mn){\cal O}(m n) operations by pre-caching the QR factorization when the same operator is used for multiple right-hand sides. Stability is proved by showing that the resulting linear operator can be diagonally preconditioned to be a compact perturbation of the identity. Applications considered include the Faraday cage, and acoustic scattering for the Helmholtz and gravity Helmholtz equations, including spectrally accurate numerical evaluation of the far- and near-field solution. The Julia software package SingularIntegralEquations.jl implements our method with a convenient, user-friendly interface

    Adaptive BEM with optimal convergence rates for the Helmholtz equation

    Get PDF
    We analyze an adaptive boundary element method for the weakly-singular and hypersingular integral equations for the 2D and 3D Helmholtz problem. The proposed adaptive algorithm is steered by a residual error estimator and does not rely on any a priori information that the underlying meshes are sufficiently fine. We prove convergence of the error estimator with optimal algebraic rates, independently of the (coarse) initial mesh. As a technical contribution, we prove certain local inverse-type estimates for the boundary integral operators associated with the Helmholtz equation

    Fast Numerical Methods for Non-local Operators

    Get PDF
    [no abstract available

    Fast numerical methods for non-local operators

    Full text link

    Benchmarking preconditioned boundary integral formulations for acoustics.

    Get PDF
    The boundary element method (BEM) is an efficient numerical method for simulating harmonic wave propagation. It uses boundary integral formulations of the Helmholtz equation at the interfaces of piecewise homogeneous domains. The discretization of its weak formulation leads to a dense system of linear equations, which is typically solved with an iterative linear method such as GMRES. The application of BEM to simulating wave propagation through large-scale geometries is only feasible when compression and preconditioning techniques reduce the computational footprint. Furthermore, many different boundary integral equations exist that solve the same boundary value problem. The choice of preconditioner and boundary integral formulation is often optimized for a specific configuration, depending on the geometry, material characteristics, and driving frequency. On the one hand, the design flexibility for the BEM can lead to fast and accurate schemes. On the other hand, efficient and robust algorithms are difficult to achieve without expert knowledge of the BEM intricacies. This study surveys the design of boundary integral formulations for acoustics and their acceleration with operator preconditioners. Extensive benchmarks provide valuable information on the computational characteristics of several hundred different models for multiple reflection and transmission of acoustic waves
    corecore