682 research outputs found

    A Cartesian grid-based boundary integral method for moving interface problems

    Full text link
    This paper proposes a Cartesian grid-based boundary integral method for efficiently and stably solving two representative moving interface problems, the Hele-Shaw flow and the Stefan problem. Elliptic and parabolic partial differential equations (PDEs) are reformulated into boundary integral equations and are then solved with the matrix-free generalized minimal residual (GMRES) method. The evaluation of boundary integrals is performed by solving equivalent and simple interface problems with finite difference methods, allowing the use of fast PDE solvers, such as fast Fourier transform (FFT) and geometric multigrid methods. The interface curve is evolved utilizing the θ−L\theta-L variables instead of the more commonly used x−yx-y variables. This choice simplifies the preservation of mesh quality during the interface evolution. In addition, the θ−L\theta-L approach enables the design of efficient and stable time-stepping schemes to remove the stiffness that arises from the curvature term. Ample numerical examples, including simulations of complex viscous fingering and dendritic solidification problems, are presented to showcase the capability of the proposed method to handle challenging moving interface problems

    Robust evolutionary methods for multi-objective and multdisciplinary design optimisation in aeronautics

    Get PDF

    Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche's coupling approach

    Full text link
    We develop a computational model to study the interaction of a fluid with a poroelastic material. The coupling of Stokes and Biot equations represents a prototype problem for these phenomena, which feature multiple facets. On one hand it shares common traits with fluid-structure interaction. On the other hand it resembles the Stokes-Darcy coupling. For these reasons, the numerical simulation of the Stokes-Biot coupled system is a challenging task. The need of large memory storage and the difficulty to characterize appropriate solvers and related preconditioners are typical shortcomings of classical discretization methods applied to this problem. The application of loosely coupled time advancing schemes mitigates these issues because it allows to solve each equation of the system independently with respect to the others. In this work we develop and thoroughly analyze a loosely coupled scheme for Stokes-Biot equations. The scheme is based on Nitsche's method for enforcing interface conditions. Once the interface operators corresponding to the interface conditions have been defined, time lagging allows us to build up a loosely coupled scheme with good stability properties. The stability of the scheme is guaranteed provided that appropriate stabilization operators are introduced into the variational formulation of each subproblem. The error of the resulting method is also analyzed, showing that splitting the equations pollutes the optimal approximation properties of the underlying discretization schemes. In order to restore good approximation properties, while maintaining the computational efficiency of the loosely coupled approach, we consider the application of the loosely coupled scheme as a preconditioner for the monolithic approach. Both theoretical insight and numerical results confirm that this is a promising way to develop efficient solvers for the problem at hand

    An Arbitrary-Lagrangian-Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations

    Full text link
    We present a novel second-order semi-implicit hybrid finite volume / finite element (FV/FE) scheme for the numerical solution of the incompressible and weakly compressible Navier-Stokes equations on moving unstructured meshes using an Arbitrary-Lagrangian-Eulerian (ALE) formulation. The scheme is based on a suitable splitting of the governing PDE into subsystems and employs staggered grids, where the pressure is defined on the primal simplex mesh, while the velocity and the remaining flow quantities are defined on an edge-based staggered dual mesh. The key idea of the scheme is to discretize the nonlinear convective and viscous terms using an explicit FV scheme that employs the space-time divergence form of the governing equations on moving space-time control volumes. For the convective terms, an ALE extension of the Ducros flux on moving meshes is introduced, which is kinetic energy preserving and stable in the energy norm when adding suitable numerical dissipation terms. Finally, the pressure equation of the Navier-Stokes system is solved on the new mesh configuration using a continuous FE method, with P1\mathbb{P}_1 Lagrange elements. The ALE hybrid FV/FE method is applied to several incompressible test problems ranging from non-hydrostatic free surface flows over a rising bubble to flows over an oscillating cylinder and an oscillating ellipse. Via the simulation of a circular explosion problem on a moving mesh, we show that the scheme applied to the weakly compressible Navier-Stokes equations is able to capture weak shock waves, rarefactions and moving contact discontinuities. We show that our method is particularly efficient for the simulation of weakly compressible flows in the low Mach number limit, compared to a fully explicit ALE schem

    Integral potential method for a transmission problem with Lipschitz interface in R^3 for the Stokes and Darcy–Forchheimer–Brinkman PDE systems

    Get PDF
    The purpose of this paper is to obtain existence and uniqueness results in weighted Sobolev spaces for transmission problems for the non-linear Darcy-Forchheimer-Brinkman system and the linear Stokes system in two complementary Lipschitz domains in R3, one of them is a bounded Lipschitz domain with connected boundary, and the other one is the exterior Lipschitz domain R3 n. We exploit a layer potential method for the Stokes and Brinkman systems combined with a fixed point theorem in order to show the desired existence and uniqueness results, whenever the given data are suitably small in some weighted Sobolev spaces and boundary Sobolev spaces

    High-order Methods for a Pressure Poisson Equation Reformulation of the Navier-Stokes Equations with Electric Boundary Conditions

    Full text link
    Pressure Poisson equation (PPE) reformulations of the incompressible Navier-Stokes equations (NSE) replace the incompressibility constraint by a Poisson equation for the pressure and a suitable choice of boundary conditions. This yields a time-evolution equation for the velocity field only, with the pressure gradient acting as a nonlocal operator. Thus, numerical methods based on PPE reformulations, in principle, have no limitations in achieving high order. In this paper, it is studied to what extent high-order methods for the NSE can be obtained from a specific PPE reformulation with electric boundary conditions (EBC). To that end, implicit-explicit (IMEX) time-stepping is used to decouple the pressure solve from the velocity update, while avoiding a parabolic time-step restriction; and mixed finite elements are used in space, to capture the structure imposed by the EBC. Via numerical examples, it is demonstrated that the methodology can yield at least third order accuracy in space and time
    • …
    corecore