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Abstract. The purpose of this paper is to obtain existence and uniqueness results in weighted
Sobolev spaces for transmission problems for the non-linear Darcy-Forchheimer-Brinkman system
and the linear Stokes system in two complementary Lipschitz domains in R3, one of them is a
bounded Lipschitz domain Ω with connected boundary, and the other one is the exterior Lipschitz
domain R3\Ω. We exploit a layer potential method for the Stokes and Brinkman systems combined
with a fixed point theorem in order to show the desired existence and uniqueness results, whenever
the given data are suitably small in some weighted Sobolev spaces and boundary Sobolev spaces.
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1. Introduction

Let α > 0 be a given constant. Then the following equations

Lα(u, π) := (4− αI) u−∇π = f , div u = 0 (1.1)

determine the normalized Brinkman system. For α = 0, the system (1.1) gives the normalized Stokes
system,

L0(u, π) := 4u−∇π = f , div u = 0. (1.2)

Both PDE systems (1.1) and (1.2) are linear.
The normalized Darcy-Forchheimer-Brinkman system

4u− αu− k|u|u− β(u · ∇)u−∇π = f , div u = 0, (1.3)

is nonlinear and describes flows through porous media saturated with viscous incompressible fluids,
where the inertia of such a fluid is not negligible. The constants α, k, β > 0 are determined by the
physical properties of such a porous medium (for further details we refer the reader to the book [58, p.
17] and the references therein). When α = k = 0, (1.3) becomes the normalized Navier-Stokes system

4u− β(u · ∇)u−∇π = f , div u = 0. (1.4)

In this paper we will mainly deal with the first three systems.
The layer potential method has a well known role in the study of elliptic boundary value problems

(see, e.g., [15, 18, 24, 30, 41, 47, 48, 53, 57, 66, 67]). Lang and Mendez [42] have used a layer potential
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technique to obtain optimal solvability results in weighted Sobolev spaces for the Poisson problem
for the Laplace equation with Dirichlet or Neumann boundary conditions in an exterior Lipschitz
domain. Escauriaza and Mitrea [23] have analyzed the transmission problems of the Laplace operator
on Lipschitz domains in Rn by exploiting a layer potential method (see also [?, ?]). Mitrea and Wright
[57] have used the integral layer potentials in the analysis of the main boundary value problems for the
Stokes system in arbitrary Lipschitz domains in Rn (n ≥ 2). The authors in [40] have defined the notion
of pseudodifferential Brinkman operator on compact Riemannian manifolds as a differentiable matrix
type operator with variable coefficients that extends the notion of differential Brinkman operator
from the Euclidean setting to such manifolds, and have obtained well-posedness results for related
transmission problems. The Dirichlet problem for the Navier-Stokes system in bounded or exterior
Lipschitz domains has been intensively studied, starting with the valuable work of Leray [43] (see
also [26, 64]). Dindos̆ and Mitrea [21] have used the integral layer potentials to show well-posedness
results in Sobolev and Besov spaces of Poisson problems for the Stokes and Navier-Stokes systems with
Dirichlet condition on C1 and Lipschitz domains in compact Riemannian manifolds (see also [56]).
Choe and Kim [17] proved existence and uniqueness of the Dirichlet problem for the Navier-Stokes
system on bounded Lipschitz domains in R3 with connected boundaries. Russo and Tartaglione [62]
studied the Robin problem of the Stokes and Navier-Stokes systems in bounded or exterior Lipschitz
domains, by exploiting a double-layer potential method (see also [8, 17]). Amrouche and Nguyen [6]
obtained existence and uniqueness results in weighted Sobolev spaces for the Poisson problem for
the Navier-Stokes system in exterior Lipschitz domains in R3 with Dirichlet boundary condition, by
using an approach based on a combination of properties of Oseen problems in R3 and in exterior
domains of R3 (see also [5, 9]). Razafison [61] obtained existence and uniqueness results for the
three-dimensional exterior Dirichlet problem for the Navier-Stokes equations in anisotropic weighted
Lq spaces, q ∈ (1,∞). The authors in [16] studied direct segregated systems of boundary-domain
integral equations for mixed (Dirichlet-Neumann) boundary value problems for a scalar second-order
divergent elliptic partial differential equation with a variable coefficient in an exterior domain in R3.
The boundary-domain integral equation system equivalence to the original boundary value problems
and the Fredholm properties and invertibility of the corresponding boundary-domain integral operators
have been analyzed in weighted Sobolev spaces. The authors in [13] used localized direct segregated
boundary-domain integral equations for variable coefficient transmission problems with interface crack
for scalar second order elliptic partial differential equations in a bounded composite domain consisting
of adjacent anisotropic subdomains having a common interface surface. Segregated direct boundary-
domain integral equation (BDIE) systems associated with mixed, Dirichlet and Neumann boundary
value problems (BVPs) for a scalar partial differential equation with variable coefficients of the Laplace
type for domains with interior cuts (cracks) have been investigated in [14]. The equivalence of BDIE’s
to such boundary value problems and the invertibility of the BDIE operators in the L2-based Sobolev
spaces have been also established. The author in [49, 50] used direct localized boundary-domain
integro-differential formulations in the study of boundary-value problems in nonlinear elasticity and
nonlinear boundary value problems with variable coefficients.

The authors in [34] combined the integral layer potentials of the Stokes and Brinkman systems
with a fixed point theorem to show the existence result for a nonlinear Neumann-transmission problem
for the Stokes and Brinkman systems in two adjacent bounded Lipschitz domains with data in Lp

spaces, Sobolev spaces, and also in Besov spaces (see also [35, 36, 37, 38]). Dindos̆ and Mitrea [20]
used results in the linear theory for the Poisson problem of the Laplace operator in Sobolev and
Besov spaces on Lipschitz domains and studied Dirichlet or Neumann problems for semilinear Poisson
equations on Lipschitz domains in compact Riemannian manifolds.

The purpose of this paper is to obtain existence and uniqueness results in L2-weighted Sobolev
spaces for transmission problems for the Darcy-Forchheimer-Brinkman and Stokes systems in two
complementary Lipschitz domains in R3, one of them is a bounded Lipschitz domain Ω with connected
boundary, and the other one is the complementary Lipschitz domain R3\Ω. We exploit a layer potential
method for the Stokes and Brinkman systems combined with a fixed point theorem in order to show
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the desired existence and uniqueness results, whenever the given data are suitably small in some L2-
based Sobolev spaces. The outline of the paper is the following. In the next section we introduce the
L2-weighted Sobolev spaces on an exterior Lipschitz domain in R3, where the existence and uniqueness
results for the nonlinear transmission problem have been obtained. In the third section we introduce
the Newtonian and layer potential operators for the Stokes and Brinkman systems. The fourth section
presents a linear Poisson problem of transmission type for the Stokes and Brinkman systems in two
complementary Lipschitz domains in R3 with data in weighted Sobolev spaces and boundary Sobolev
spaces. Theorem 4.4 is devoted to the well-posedness of such a problem and has been obtained by
using an integral layer potential method. In the last section, we exploit the well-posedness result
obtained for the linear problem together with a fixed point theorem in order to show the existence
and uniqueness of the solution of a boundary value problem of transmission type for the Stokes and
Darcy-Forchheimer-Brinkman systems in two complementary Lipschitz domains in R3 with data in
weighted Sobolev spaces and boundary Sobolev spaces. In the Appendix we obtain various mapping
properties of the Newtonian and layer potential operators for the Stokes and Brinkman systems in
weighted or standard Sobolev spaces on exterior or bounded Lipschitz domains in R3.

Transmission problems coupling the Stokes and Darcy-Forchheimer-Brinkman systems appear as
the mathematical model in various practical problems such as environmental problems with free air
flow interacting with evaporation from soils (see, e.g., [11, 31]). An important application in medicine
is the transvascular exchange between blood flow in vessels and the surrounding tissue as porous
material and also in capillaries and tissue (see [10]).

2. Preliminary results

Let Ω+ ⊂ R3 be a bounded Lipschitz domain, i.e., an open connected set whose boundary ∂Ω is locally
the graph of a Lipschitz function. Let Ω− := R3 \ Ω+ denote the exterior Lipschitz domain.

2.1. Standard Sobolev spaces and related results

Let Ω′ be Ω+, Ω− or R3. We denote by E(Ω′) := C∞(Ω′) the space of infinitely differentiable functions
and by D(Ω′) := C∞comp(Ω′) the space of infinitely differentiable functions with compact support in Ω′,
equipped with the inductive limit topology. Also, E ′(Ω′) and D′(Ω′) denote the corresponding spaces
of distributions on Ω, i.e., the duals of D(Ω′) and E(Ω′), respectively.

Let F and F−1 be the Fourier transform and its inverse defined on the L1(R3) functions as

ĝ(ξ) = [Fg](ξ) :=

∫
R3

e−2πix·ξg(x)dx, g(x) = [F−1ĝ](x) :=

∫
R3

e2πix·ξĝ(ξ)dξ,

and generalised to the space of tempered distributions. Note that L2(R3) is the Lebesgue space of
(equivalence classes of) measurable, square integrable functions on R3, and L∞(R3) is the space of
(equivalence classes of) essentially bounded measurable functions on R3. For s ∈ R, let us consider
the L2-based Sobolev (Bessel potential) spaces

Hs(R3) :=
{

(I −4)−
s
2 f : f ∈ L2(R3)

}
=
{
F−1(1 + |ξ|2)−

s
2Ff : f ∈ L2(R3)

}
, (2.1)

Hs(R3)3 := {f = (f1, f2, f3) : fj ∈ Hs(R3), j = 1, 2, 3}, (2.2)

Hs(Ω) := {f ∈ D′(Ω) : ∃ F ∈ Hs(R3) such that F |Ω = f}. (2.3)

The space H̃s(Ω′) is the closure of D(Ω′) in H1(R3). This space can be also characterized as

H̃s(Ω′) := {f ∈ Hs(R3) : supp f ⊆ Ω′}. (2.4)

The vector-functions (distributions) belong to Hs(Ω′)3 and H̃s(Ω′)3 if their components belong to the

corresponding scalar spaces Hs(Ω′) and H̃s(Ω′), as in (2.2) (see, e.g., [46]). For s ≥ 0, the spaces (2.1)
coincide with Sobolev-Slobodetskii spaces W s,2(R3) (see, e.g., [30, Chapter 4]). In particular, such
spaces are Sobolev spaces if s is an integer. For s > − 1

2 such that s − 1
2 is non-integer, the Sobolev

space H̃s(Ω′) can be identified with the closure H̊s(Ω) of D(Ω′) in the norm of Hs(Ω′) (see, e.g., [25],
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[46, Theorem 3.33]). The spaces Hs(Ω′) and H̊s(Ω′) coincide for s ≤ 1
2 , see [51, Theorem 2.12]. For

any s ∈ R, D(Ω′) is dense in Hs(Ω′) and the following duality relations hold (see [32, Proposition 2.9],
[25, (1.9)], [55, (4.14)])

(Hs(Ω′))
′

= H̃−s(Ω′), H−s(Ω′) =
(
H̃s(Ω′)

)′
. (2.5)

For s ∈ [0, 1], the Sobolev space Hs(∂Ω) on the boundary ∂Ω can be defined by using the space
Hs(R2), a partition of unity and the pull-backs of the local parametrization of ∂Ω. In addition, we note
that H−s(∂Ω) = (Hs(∂Ω))

′
. All the above spaces are Hilbert spaces. For further properties of Sobolev

spaces on bounded Lipschitz domains and Lipschitz boundaries, we refer to [28, 32, 46, 55, 57, 65].
A useful result for the problems we are going to investigate is the following trace lemma (see

[18], [32, Proposition 3.3], [51, Theorem 2.3, Lemma 2.6], [52], [57, Theorem 2.5.2]):

Lemma 2.1. Assume that Ω := Ω+ ⊂ R3 is a bounded Lipschitz domain with connected boundary
∂Ω and denote by Ω− := R3 \ Ω the corresponding exterior domain. Then there exist linear and

continuous trace operators1 γ± : H1(Ω±) → H
1
2 (∂Ω) such that γ±f = f |∂Ω for any f ∈ C∞(Ω±).

These operators are surjective and have (non-unique) linear and continuous right inverse operators

γ−1
± : H

1
2 (∂Ω)→ H1(Ω±).

Note that the trace operator can be also defined through the non-tangential boundary trace as
in, e.g., [57, Section 2.3].

2.2. Weighted Sobolev spaces and related results

We now consider the weight function ρ(x) :=
(
1 + |x|2

) 1
2 , x = (x1, x2, x3) ∈ R3. Then we define the

weighted space L2(ρ−1; Ω−) as

f ∈ L2(ρ−1; Ω−)⇐⇒ ρ−1f ∈ L2(Ω−). (2.6)

We also define the weighted Sobolev space

H1(Ω−) :=
{
f ∈ D′(Ω−) : ρ−1f ∈ L2(Ω−), ∇f ∈ L2(Ω−)3

}
, (2.7)

which is a Hilbert space with the norm

‖f‖H1(Ω−) :=
(∥∥ρ−1f

∥∥2

L2(Ω−)
+ ‖∇f‖2L2(Ω−)3

) 1
2

(2.8)

(cf. [29]; see also [6], [22]). In addition, we consider the space H̊1(Ω−) ⊂ H1(Ω−), which is the closure

of D(Ω−) in H1(Ω−), and the space H̃1(Ω−) ⊂ H1(R3), which is the closure of D(Ω−) in H1(R3).

Note that H̊1(Ω−) coincides with the space
{
v ∈ H1(Ω−) : γ−v = 0 on ∂Ω

}
(see, e .g., [6, p. 44]), and

H̃1(Ω−) = {u ∈ H1(R3) : supp u ⊆ Ω−} (2.9)

(cf., e.g. [46, Theorem 3.29(ii)]). Note that γ− is the trace operator defined in Lemma 2.1. Although,

the domain of the functions of H̃1(Ω−) is R3, while the domain of the functions from H̊1(Ω−) is
Ω−, we will often identify such spaces (cf., e.g., [46, Theorem 3.33]), when this does not lead to any
confusion. Also the seminorm

|g|H1(Ω−) := ‖∇g‖L2(Ω−)3

is equivalent to the norm (2.8) in H1(Ω−) (see, e.g., [22], [16, (2.3)]). We also introduce the spaces

H−1(Ω−) =
(
H̃1(Ω−)

)′
, H̃−1(Ω−) =

(
H1(Ω−)

)′
. (2.10)

When Ω− = R3, we have H̃−1(R3) = H−1(R3).

We note that D(Ω−) is dense in H̊1(Ω−) by definition, and also in H̃1(Ω−) (see, e.g., [16]). The
space D(Ω−) is dense in H1(Ω−) (see, e.g., [7, p.136]). The weighted Sobolev spaces of vector-valued

1The trace operator defined on Sobolev spaces of vector fields on the domain Ω± is also denoted by γ±.
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functions H±1(Ω−)3 and H̃±1(Ω−)3 can be defined similarly. Moreover, due to the equivalence of the
norm and seminorm in H1(Ω−), by the Sobolev inequality [1, Theorem 4.31] we have the embedding

H1(Ω−) ↪→ L6(Ω−). (2.11)

We can also define the exterior trace operator on the weighted Sobolev space H1(Ω−),

γ− : H1(Ω−) → H
1
2 (∂Ω). This operator is surjective (see [63, Proposition 2.4]). Since H1(Ω−) is

continuously embedded in H1(Ω−), Lemma 2.1 implies the following assertion (cf. [42, Lemma 5.3],
[51, Theorem 2.3, Lemma 2.6]).

Lemma 2.2. Let Ω ⊂ R3 be a bounded Lipschitz domain with connected boundary ∂Ω. Then there exists
a (non-unique) linear and continuous right inverse γ−1

− : H
1
2 (∂Ω) → H1(Ω−) to the trace operator

γ− : H1(Ω−)→ H
1
2 (∂Ω).

The following definition specifies in which sense the conditions at infinity, associated with the
transmission problems studied in this paper, are satisfied (cf. [7, Definition 2.2, Remark 2.3].

Definition 2.3. A function u tends to a constant u∞ at infinity in the sense of Leray if

lim
r→∞

∫
S2

|u(ry)− u∞|dσy = 0. (2.12)

Corollary 2.4. If u ∈ H1(Ω−) then u tends to zero at infinity in the sense of Leray, i.e.,

lim
r→∞

∫
S2

|u(ry)|dσy = 0. (2.13)

Proof. Indeed, u ∈ H1(Ω−) implies that ∇u ∈ L2(Ω−)3. Then by Lemma A.1 there exists a constant
u∞ ∈ R such that u− u∞ ∈ L6(Ω−). Also, u ∈ L6(Ω−) by embedding (2.11). Therefore, the constant
u∞ ∈ L6(Ω−), and accordingly u∞ = 0. Hence, (A.1) implies the validity of (2.13). �

Let X be either an open subset or a surface in R3. Then, all along the paper, we use the notation
〈·, ·〉X for the duality pairing of two dual Sobolev spaces defined on X.

2.3. The Brinkman and Stokes systems in standard Sobolev spaces

Let Ω′ be Ω+, Ω− or R3, α ∈ R and let (u, π) ∈ H1(Ω′)3 × L2(Ω′). Then the Brinkman (and Stokes)
system is understood in the distributional sense as

〈Lα(u, π),w〉Ω′ = 〈f ,w〉Ω′ , 〈div u, g〉Ω′ = 0, ∀ (w, g) ∈ D(Ω′)3 ×D(Ω′), (2.14)

where

〈Lα(u, π),w〉Ω′ := 〈4u− αu−∇π,w〉Ω′ = −〈∇u,∇w〉Ω′ − 〈αu,w〉Ω′ + 〈π,div w〉Ω′ . (2.15)

Since the space D(Ω′) is dense in H̃1(Ω′) and in L2(Ω′), and the bilinear form in the right hand side of

(2.15) is bounded on (u, π) ∈ H1(Ω′)3×L2(Ω′) and w ∈ H̃1(Ω′)3, expression (2.15) defines a bounded
linear operator

Lα : H1(Ω′)3 × L2(Ω′)→ H−1(Ω′)3 =
(
H̃1(Ω′)3

)′
. (2.16)

Note that the operator div : H1(Ω′)3 → L2(Ω′) in the second equation in (2.14) is evidently bounded.
If (u, π) ∈ C1(Ω±)3 × C0(Ω±), we define the interior and exterior conormal derivatives (i.e.,

boundary tractions) for the Brinkman and Stokes systems, t±α (u, π), by the well-known formula

t±α (u, π) := γ± (−πI + 2E(u)) ν, (2.17)

where E(u) is the symmetric part of ∇u, and ν= ν+ is the outward unit normal to Ω+, defined a.e.
on ∂Ω. Then for α ∈ R and any function ϕ ∈ D(R3)3 we obtain the the first Green identity

±
〈
t±α (u, π),ϕ

〉
∂Ω

=2〈E(u),E(ϕ)〉Ω± + α〈u,ϕ〉Ω± − 〈π,div ϕ〉Ω± + 〈Lα(u, π),ϕ〉Ω± . (2.18)

This formula suggests the following weak definition of the conormal derivative in the setting of L2-
based Sobolev spaces (cf. [18, Lemma 3.2], [37, Lemma 2.2], [38, Lemma 2.2], [51, Definition 3.1,
Theorem 3.2], [54, Proposition 3.6], [57, Theorem 10.4.1], [52]).
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Lemma 2.5. Let Ω+ ⊂ R3 be a bounded Lipschitz domain and Ω− = R3 \ Ω+. Let α ≥ 0 and

HHH1(Ω±,Lα) :=
{

(u±, π±, f̃±) ∈ H1(Ω±)3 × L2(Ω±)× H̃−1(Ω±)3 :

Lα(u±, π±) = f̃±|Ω± and div u± = 0 in Ω±

}
. (2.19)

Then the conormal derivative operators t±α : HHH1(Ω±,Lα)→ H−
1
2 (∂Ω)3, defined by

HHH1(Ω±,Lα) 3 (u±, π±, f̃±) 7−→ t±α (u±, π±; f̃±) ∈ H− 1
2 (∂Ω)3, (2.20)

±
〈
t±α (u±, π±; f̃±),Φ

〉
∂Ω

:= 2〈E(u±),E(γ−1
± Φ)〉Ω± + α〈u±, γ−1

± Φ〉Ω±
− 〈π±,div(γ−1

± Φ)〉Ω± + 〈f̃±, γ−1
± Φ〉Ω± , ∀ Φ ∈ H 1

2 (∂Ω)3 (2.21)

are bounded and do not depend on the choice of the right inverse γ−1
± of the trace operator

γ± : H1(Ω±)3 → H
1
2 (∂Ω)3. In addition, for all (u±, π±, f̃±) ∈ HHH1(Ω±,Lα) and for any w± ∈

H1(Ω±)3, the following Green identities hold:

±
〈
t±α (u±, π±; f̃±), γ±w±

〉
∂Ω

=2〈E(u±),E(w±)〉Ω±+α〈u±,w±〉Ω±−〈π±,div w±〉Ω± + 〈f̃±,w±〉Ω± .
(2.22)

Remark 2.6. By exploiting arguments similar to those of the proof of Theorem 3.10 and the paragraph
following it in [51], one can see that the weak conormal derivative on ∂Ω can be equivalently defined
by the dual form like (2.21) but only on a Lipschitz subset Ω′± ⊂ Ω± such that ∂Ω ⊂ ∂Ω′± and

Ω′′± := Ω± \ Ω′± has closure equal to Ω \ Ω′± (i.e., on Ω′± laying near the boundary ∂Ω) as

t±α (u±, π±; f̃ ′±) = r
∂Ω

t′±α (u±, π±; f̃ ′±), (2.23)

where f̃ ′± ∈ H̃−1(Ω′±)3 is such that rR3\Ω′′±
f̃ ′± = rR3\Ω′′±

f̃±, Ω′′± := Ω±\Ω′±, and t′±α : HHH1(Ω′±,Lα) →

H−
1
2 (∂Ω′±)3, is the continuous operator defined as〈

t′±α (u±, π±; f̃ ′±),Φ
〉
∂Ω′±

:= 2〈E(u±),E(γ−1
± Φ)〉Ω′± + α〈u±, γ−1

± Φ〉Ω′±

− 〈π±,div(γ−1
± Φ)〉Ω′± + 〈f̃ ′±, γ−1

± Φ〉Ω′± , ∀ Φ ∈ H 1
2 (∂Ω′±)3. (2.24)

Moreover, definition (2.23)-(2.24) is well applicable to the class of functions (u±, π±; f̃ ′±) ∈HHH1(Ω′±,Lα)

that are not obliged to belong to HHH1(Ω±,Lα). This is particularly useful for the functions u− tending
to a non-zero constant at infinity and which accordingly do not belong to H1(Ω−)3.

Remark 2.7. Note that the conormal derivative operator is linear in the sense that

c1t
±
α (u1, π1; f̃1) + c2t

±
α (u2, π2; f̃2) = t±α (c1u1 + c2u2, c1π1 + c2π2; c1f̃1 + c2f̃2) (2.25)

if (ui, πi; f̃i) ∈HHH1(Ω±,Lα), i = 1, 2, and c1, c2 ∈ R.

Remark 2.8. If f̃ ∈ H̃− 1
2 (Ω±)3 ⊂ H̃−1(Ω±)3, then f̃ is uniquely determined by (u±, π±) as the unique

extension of Lα(u±, π±) ∈ H−1/2(Ω±)3 to H̃−
1
2 (Ω±)3. In this case, t±α (u, π; f̃) becomes the canonical

conormal derivative (cf. [51], [52]), which we denote as t±α (u, π). One can show that this notation is
consistent with the classical definition of the conormal derivative if (u, π) ∈ C1(Ω±)3 × C0(Ω±) (cf.

[51, Theorem 3.16]). We will particularly use this property for f̃ = 0.

Note also that by Remark 2.6, for the conormal derivative to be canonical, it is sufficient that

f̃ ∈ H̃−1/2
loc (Ω′±)3 in a domain Ω′± ⊂ Ω± laying near the boundary ∂Ω in the sense of Remark 2.6.
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2.4. The Stokes system in weighted Sobolev spaces in exterior domain

For the exterior domain Ω−, we need to consider the Stokes system in weighted Sobolev spaces.

Let (u, π) ∈ H1(Ω−)3×L2(Ω−). Then taking α = 0 in (2.14) we obtain the Stokes system in the
distribution sense,

〈L0(u, π),w〉Ω− = 〈f̃ ,w〉Ω− , 〈div u, g〉Ω− = 0, ∀ (w, g) ∈ D(Ω−)3 ×D(Ω−), (2.26)

where

〈L0(u, π),w〉Ω− := 〈4u−∇π,w〉Ω− = −〈∇u,∇w〉Ω− + 〈π,div w〉Ω− . (2.27)

Since the space D(Ω−)3 is dense in H̃1(Ω−)3 and the bilinear form in the right hand side of (2.27)

is bounded on (u, π) ∈ H1(Ω−)3 × L2(Ω−) and w ∈ H̃1(Ω−)3, expression (2.27) defines a bounded
linear operator

L0 : H1(Ω−)3 × L2(Ω−)→ H−1(Ω−)3 =
(
H̃1(Ω−)3

)′
in weighted Sobolev spaces in exterior domains, in addition to (2.16) also valid for α = 0 in standard
Sobolev spaces. Note that the operator div : H1(Ω−)3 → L2(Ω−) in the second equation in (2.26) is
bounded as well due to the definition of the space H1(Ω−)3.

We now show the following version of Lemma 2.5 for the Stokes system in weighted Sobolev
spaces on exterior Lipschitz domains.

Lemma 2.9. Let Ω+ ⊂ R3 be a bounded Lipschitz domain with connected boundary ∂Ω. Let Ω− :=
R3 \ Ω+ and

HHH1(Ω−,L0) :=
{

(u, π, f̃) ∈H1(Ω−)3 × L2(Ω−)× H̃−1(Ω−)3 :

L0(u, π) := 4u−∇π = f̃ |Ω− and div u = 0 in Ω−

}
. (2.28)

Then the conormal derivative operator t−0 :HHH1(Ω−,L0)→ H−
1
2 (∂Ω)3,

HHH1(Ω−,L0) 3 (u, π, f̃) 7−→ t−0 (u, π; f̃) ∈ H− 1
2 (∂Ω)3, (2.29)〈

t−0 (u, π; f̃),φ
〉
∂Ω

:=−2〈E(u),E(γ−1
− φ)〉Ω−+〈π,div(γ−1

− φ)〉Ω−−〈f̃ , γ−1
− φ〉Ω− , ∀ φ ∈ H

1
2 (∂Ω)3, (2.30)

is linear and bounded, and does not depend on the choice of the right inverse γ−1
− of the trace operator

γ− : H1(Ω−)3 → H
1
2 (∂Ω)3). In addition, the following Green formula holds:〈

t−0 (u, π; f̃), γ−w
〉
∂Ω

=−2〈E(u),E(w)〉Ω− + 〈π,div w〉Ω−−〈f̃ ,w〉Ω− (2.31)

for all (u, π, f̃) ∈ HHH1(Ω−,L0) and w ∈ H1(Ω−)3.

Proof. Note that H̃−1(Ω−) =
(
H1(Ω−)

)′
, and that accordingly, the last dual pairing in the right-hand

side of (2.30) is well-defined. All other dual products in (2.30) are also well-defined. Therefore, operator
(2.29) is well-defined. By Lemma 2.2, the operator γ−1

− involved in the right-hand side of formula (2.30)
is bounded. All other involved operators are bounded as well, and, hence, operator (2.29) is bounded.
Moreover, the independence of (2.29) of the choice of the operator γ−1

− , as in Lemma 2.2, follows by
arguments similar to those for [51, Theorem 3.2].

Further, by (2.30), and by continuity of the trace operator from H1(Ω−)3 to H
1
2 (∂Ω)3, we have,〈

t−0 (u, π; f̃), γ−w
〉
∂Ω

= −2
〈
E(u),E(γ−1

− γ−w)
〉

Ω−
+
〈
π,div(γ−1

− γ−w)
〉

Ω−
−
〈
f̃ , γ−1
− γ−w

〉
Ω−

= −2 〈E(u),E(w)〉Ω− + 〈π,div w〉Ω− −
〈
f̃ ,w

〉
Ω−
− 2

〈
E(u),E(γ−1

− γ−w −w)
〉

Ω−

+
〈
π,div(γ−1

− γ−w −w)
〉

Ω−
−
〈
f̃ , γ−1
− γ−w −w

〉
Ω−

, ∀ w ∈ H1(Ω−)3. (2.32)
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Since γ−
(
γ−1
− γ−w −w

)
= 0 on ∂Ω, we obtain that γ−1

− γ−w −w ∈ H̊1(Ω−)3, where

H̊1(Ω−) := D(Ω−)
H1(Ω−)

. (2.33)

H̊1(Ω−) can be characterized as the subspace of H1(Ω−) with null traces, i.e.,

H̊1(Ω−) =
{
v0 ∈ H1(Ω−) : γ−v0 = 0 on ∂Ω

}
(2.34)

(see, e.g., [6, p. 44], [46, Theorem 3.29(ii),Theorem 3.33]). Then Green’s identity (2.31) follows from
(2.32) provided that we can show that

−2〈E(u),E(v)〉Ω− + 〈π,div v〉Ω−−〈f̃ ,v〉Ω− = 0 (2.35)

for any v ∈ H̊1(Ω−)3. By definition (2.33), D(Ω−) is dense in H̊1(Ω−) (cf., e.g., [6, p. 44], [42, Lemma
2.3]). Therefore, it suffices to show identity (2.35) only for functions v ∈ D(Ω−)3. However, in this

case, formula (2.35) follows by the membership of (u, π, f̃) in the space HHH1(Ω′,L0), where Ω′ is a
bounded Lipschitz domain such that supp(v) ⊂ Ω′ ⊂ Ω−, and by the Green identity (2.22). �

3. Newtonian and layer potential operators for the Stokes and Brinkman systems

Let α > 0 and (Gα(·, ·),Πα(·, ·)) ∈ D′(R3×R3)3×3×D′(R3×R3)3 be the fundamental solution of the
Brinkman system in R3. Hence,

(4x − αI)Gα(x,y)−∇xΠα(x,y) = −δy(x)I, divxGα(x,y) = 0, (3.1)

where δy is the Dirac distribution with mass at y. Note that the subscript x added to a differential
operator indicates that we are differentiating with respect to x. Let Gαij(·, ·) be the components of the
fundamental tensor Gα(·, ·). Let Πα

j (·, ·) be the components of the fundamental vector Πα(·, ·). Then

Gαjk(x) =
1

8π

{
δjk
|x|

A1

(
α

1
2 |x|

)
+
xjxk
|x|3

A2

(
α

1
2 |x|

)}
, Πα

j (x) = Πj(x) =
1

4π

xj
|x|3

, (3.2)

where

A1(z) = 2e−z(1 + z−1 + z−2)− 2z−2, A2(z) = −2e−z(1 + 3z−1 + 3z−2) + 6z−2 (3.3)

(cf.. e.g., [45], [66, Chapter 2] and [41, Section 3.2.1]).
In addition, the components of the stress tensor Sα(·, ·) are given in view of (3.2) and (3.3) by

Sαjk`(x) := −Πk(x)δj` +
∂Gαjk(x)

∂x̀
+
∂Gα`k(x)

∂xj

= − 1

4π

{
δk`

xj
|x|3

D1

(
α

1
2 |x|

)
+

(
δjk

x`
|x|3

+δj`
xk
|x|3

)
D2

(
α

1
2 |x|

)
+
xjxkx`
|x|5

D3(α
1
2 |x|)

}
, (3.4)

where

D1(z) = 2e−z(1 + 3z−1 + 3z−2)− 6z−2 + 1, D2(z) = e−z(z + 3 + 6z−1 + 6z−2)− 6z−2,

D3(z) = e−z(−2z − 12− 30z−1 − 30z−2) + 30z−2

(see also, e.g., [45], [66, Chapter 2], [67] and [41, Section 3.2.1]). Let Λα denote the fundamental
pressure tensor whose components Λαjk are given by

Λαjk(x) =
1

4π

{
δjk
|x|3

(
α|x|2 − 2

)
+ 6

xjxk
|x|5

}
(3.5)

(see [41, (3.6.15)]). Note that, for x 6= y,

4xS
α
jk`(y,x)− αSαjk`(y,x)−

∂Λαj`(x,y)

∂xk
= 0,

∂Sαjk`(y,x)

∂xk
= 0. (3.6)

For α = 0 we obtain the fundamental solution of the Stokes system. Henceforth, we use the
notation (G(·, ·),Π(·, ·)) ∈ D′(R3 × R3)3×3 × D′(R3 × R3)3 for such a fundamental solution, which
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satisfies equations (3.1) with α = 0. In addition, the components of G(·, ·) and Π(·, ·) are given by (see,
e.g., [41, p. 38, 39]):

Gjk(x) =
1

8π

{
δjk
|x|

+
xjxk
|x|3

}
, Πj(x) =

1

4π

xj
|x|3

. (3.7)

The stress and pressure tensors S and Λ have the components (see, e.g., [41, pp. 39, 132]):

Sjk`(x) = − 3

4π

xjxkx`
|x|5

, Λjk(x) =
1

2π

(
− δjk
|x|3

+ 3
xjxk
|x|5

)
. (3.8)

Let further on, Gα(x,y) = Gα(x−y) and Πα(x,y) = Π(x−y). For ϕ ∈ D(R3)3, α ≥ 0, the Newtonian
velocity and pressure potentials, for the Brinkman system, are, respectively, defined as(

Nα;R3ϕ
)
(x) := −

〈
Gα(x, ·),ϕ

〉
R3

= −
∫
R3

Gα(x,y)ϕ(y) dy, (3.9)(
Qα;R3ϕ

)
(x)=

(
QR3ϕ

)
(x) := −

〈
Π(x, ·),ϕ

〉
R3

= −
∫
R3

Π(x,y)ϕ(y) dy, x ∈ R3 (3.10)

and the operators Nα;R3 : D(R3)3 → E(R3)3, Qα;R3 : D(R3)3 → E(R3) are evidently continuous. Note
that due to (3.1), we have the relations

4(Nα;R3f)− αNα;R3f −∇(Qα;R3f) = f , divNα;R3f = 0 in R3. (3.11)

Let rΩ± be the operators restricting vector-valued or scalar-valued distributions in R3 to Ω±. When
Nα;R3f and Qα;R3f are well defined on R3, we can also define their restrictions to Ω± as

Nα;Ω±f := rΩ±

(
Nα;R3f

)
, Qα;Ω±f= QΩ±f := rΩ±

(
QR3f

)
. (3.12)

We use the notation N R3 := N 0;R3 and similar ones when R3 is replaced by Ω±.
Definitions (3.9) and (3.10) can be extended to Sobolev spaces, and the mapping properties of

the corresponding operators are proved in Lemmas A.3 and A.7.
Now let g ∈ H−

1
2 (∂Ω)3. Then the single-layer potential Vα;∂Ωg and the pressure potential

Qsα;∂Ωg for the Brinkman system are given by(
Vα;∂Ωg

)
(x) :=

〈
Gα(x, ·),g

〉
∂Ω
,
(
Qsα;∂Ωg

)
(x)=

(
Qs∂Ωg

)
(x) :=

〈
Π(x, ·),g

〉
∂Ω
, x ∈ R3 \ ∂Ω, (3.13)

and the corresponding non-tangential limiting values satisfy the relations (see (A.40) in Lemma A.8)

γ+

(
Vα;∂Ωg

)
= γ−

(
Vα;∂Ωg

)
=: Vα;∂Ωg.

Let ν
`
, ` = 1, . . . , n, be the components of the outward unit normal ν to Ω, which is defined a.e. on

∂Ω. Let h ∈ H 1
2 (∂Ω)3. Then the double-layer potential Wα;∂Ωh and its associated pressure potential

Qdα;∂Ωh for the Brinkman system are given at any x ∈ R3 \ ∂Ω by2(
Wα;∂Ωh

)
k
(x) :=

∫
∂Ω

Sαjk`(y,x)ν̀ (y)hj(y)dσy,
(
Qdα;∂Ωh

)
(x) :=

∫
∂Ω

Λαj`(x,y)ν
`
(y)hj(y)dσy. (3.14)

In addition, the principal value of Wα;∂Ωh is denoted by

(Kα;∂Ωh)k(x) := p.v.

∫
∂Ω

Sαjk`(y,x)ν̀ (y)hj(y)dσy a.e. x ∈ ∂Ω, (3.15)

and the corresponding conormal derivatives are related by the formula (see (A.43) in Lemma A.8)

t+
α

(
Wα;∂Ωh,Qdα;∂Ωh

)
= t−α

(
Wα;∂Ωh,Qdα;∂Ωh

)
=: Dα;∂Ωh.

For α = 0, i.e., in case of the Stokes system, we use the following abbreviations:

V∂Ω :=V0;∂Ω, V∂Ω :=V0;∂Ω, W∂Ω :=W0;∂Ω, K∂Ω :=K0;∂Ω, D∂Ω :=D0;∂Ω.

By (3.1) and (3.6), (Vα;∂Ωg,Qs∂Ωg) and (Wα;∂Ωh,Qdα;∂Ωh) satisfy the Brinkman system in R3 \ ∂Ω.

The main properties of the layer potential operators for the Stokes system (α = 0), as well as
for the Brinkman system (α > 0), are provided in Lemmas A.4 and A.8.

2The repeated index summation convention is adopted everywhere in the paper.
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4. Poisson problem of transmission type for the Stokes and Brinkman systems in
complementary Lipschitz domains in weighted Sobolev spaces

Let Ω+ := Ω ⊂ R3 be a bounded Lipschitz domain with connected boundary ∂Ω and let Ω− := R3 \Ω.
Let ν be the outward unit normal to ∂Ω. Consider the spaces

H1
div(Ω+)3 :=

{
w ∈ H1(Ω+)3 : div w = 0 in Ω+

}
, (4.1)

H1
div(Ω−)3 :=

{
w ∈ H1(Ω−)3 : div w = 0 in Ω−

}
, (4.2)

X := H1
div(Ω+)3 × L2(Ω+)×H1

div(Ω−)3 × L2(Ω−), (4.3)

Y := H̃−1(Ω+)3 × H̃−1(Ω−)3 ×H 1
2 (∂Ω)3 ×H− 1

2 (∂Ω)3, (4.4)

Y∞ := H̃−1(Ω+)3 × H̃−1(Ω−)3 ×H 1
2 (∂Ω)3 ×H− 1

2 (∂Ω)3 × R3, (4.5)

where the norms on the first two spaces are inherited from their parent spaces, H1(Ω+)3 and H1(Ω−)3,
respectively, while the norms in the last three spaces are defined as the sum of the corresponding norms
of their components.

Next we consider the Poisson problem of transmission type for the incompressible Stokes and
Brinkman systems in the complementary Lipschitz domains Ω±,

4u+ − αu+ −∇π+ = f̃+|Ω+
in Ω+,

4u− −∇π− = f̃−|Ω− in Ω−,
γ+u+ − γ−u− = h0 on ∂Ω,

t+
α (u+, π+; f̃+)− µt−0 (u−, π−; f̃−) + 1

2P (γ−u− + γ+u+) = g0 on ∂Ω,

(4.6)

where µ > 0 is a constant and P ∈ L∞(∂Ω)3×3 is a symmetric matrix-valued function which satisfies
the positivity condition

〈Pv,v〉
∂Ω
≥ 0, ∀ v ∈ L2(∂Ω)3. (4.7)

The transmission conditions on ∂Ω are a generalization of the ones considered, e.g., in [59], [60],
and the constant µ is the ratio of viscosity coefficients in Ω+ and Ω−, by which the equations are

normalized. Note that the conormal derivative t−0 (u−, π−; f̃−) in the last transmission condition in
(4.6) is well defined due to Remark 2.6.

We will look for a solution (u+, π+,u−, π−) of the transmission problem (4.6) satisfying

(u+, π+,u− − u∞, π−) ∈ X (4.8)

for a given constant vector u∞ ∈ R3, and show the well-posedness of the transmission problem (4.6),
(4.8). Let us start from uniqueness.

Lemma 4.1. Let Ω+ := Ω ⊂ R3 be a bounded Lipschitz domain with connected boundary ∂Ω. Let
Ω− := R3 \ Ω denote the corresponding exterior Lipschitz domain. Let α, µ > 0 and condition (4.7)

hold. Then for
(
f̃+, f̃−,h0,g0,u∞

)
∈ Y∞, the transmission problem (4.6) has at most one solution

(u+, π+,u−, π−) satisfying condition (4.8).

Proof. Let us assume that
(
u0

+, π
0
+,u

0
−, π

0
−
)

is the difference of two solutions of (4.6) satisfying (4.8).

Then
(
u0

+, π
0
+,u

0
−, π

0
−
)

belongs to X and satisfies the homogeneous version of (4.6). We now apply

the Green formula (2.22) to
(
u0

+, π
0
+

)
∈ H1

div(Ω+)3×L2(Ω+) in the Lipschitz domain Ω+, and obtain

〈t+
α (u0

+, π
0
+), γ+u0

+〉∂Ω = 2‖E(u0
+)‖2L2(Ω+)3×3 + α‖u0

+‖2L2(Ω+)3 , (4.9)

where E(u0
+) is the symmetric part of ∇u0

+. By applying the Green formula (2.31) to the pair(
u0
−, π

0
−
)
∈ H1

div(Ω−)3 × L2(Ω−) in the exterior domain Ω−, we obtain that

−µ〈t−0 (u0
−, π

0
−), γ−u0

−〉∂Ω = 2µ‖E(u0
−)‖2L2(Ω−)3×3 . (4.10)

By adding formulas (4.9) and (4.10) and by exploiting the homogeneous transmission conditions
satisfied by the pairs

(
u0

+, π
0
+

)
and

(
u0
−, π

0
−
)
, we obtain the equality

2‖E(u0
+)‖2L2(Ω+)3×3 + α‖u0

+‖2L2(Ω+)3 + 2µ‖E(u0
−)‖2L2(Ω−)3×3
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=
〈
t+
α (u0

+, π
0
+)− µt−0 (u0

−, π
0
−), γ−u0

−
〉
∂Ω

= −
〈
P γ−u0

−, γ−u0
−
〉
∂Ω
, (4.11)

where the left-hand side is non-negative, while the right-hand side is non-positive due to the positivity
condition (4.7) satisfied by the matrix-valued function P. Therefore, both hand sides vanish, and hence

u0
+ = 0 in Ω+, E(u0

−) = 0 in Ω−. (4.12)

Thus, π0
+ = c ∈ R in Ω+. In addition, the first relation in (4.12) and the transmission condition

γ−u0
− = γ+u0

+ on ∂Ω yield

γ−u0
− = 0 on ∂Ω. (4.13)

Hence, (u0
−, π

0
−) is a solution in the space H1(Ω−)3×L2(Ω−) of the exterior Dirichlet problem for the

homogeneous Stokes system with homogeneous Dirichlet boundary condition. By [27, Theorem 3.4]
(see also [4, Theorem 2.1]), the solution of such a problem is unique, i.e., u0

− = 0, π0
− = 0 in Ω−. Then

γ−u0
− = γ+u0

+, t+
α (u0

+, π
0
+)− µt−0 (u0

−, π
0
−) +

1

2
P
(
γ−u0

− + γ+u0
+

)
= 0

and (4.13) yield that π0
+ = 0 in Ω+. Consequently, u0

± = 0, π0
± = 0 in Ω±. �

Next we show the existence of solution of transmission problem (4.6), (4.8) in the case u∞ = 0.

Theorem 4.2. Let Ω+ := Ω ⊂ R3 be a bounded Lipschitz domain with connected boundary ∂Ω. Let
Ω− := R3 \ Ω be the exterior Lipschitz domain. Let α, µ > 0 and condition (4.7) hold. Then for(
f̃+, f̃−,h0,g0

)
∈ Y, the transmission problem (4.6) has a unique solution (u+, π+,u−, π−) ∈ X and

there exists a linear continuous operator

T : Y → X (4.14)

delivering such a solution. Hence there exists a constant C ≡ C(Ω+,Ω−,P, α, µ) > 0 such that

‖ (u+, π+,u−, π−) ‖X ≤ C
∥∥(f̃+, f̃−,h0,g0)

∥∥
Y . (4.15)

Moreover, u− vanishes at infinity in the sense of Leray, i.e.,

lim
r→∞

∫
S2

|u−(ry)|dσy = 0. (4.16)

Proof. We construct a solution (u+, π+,u−, π−) ∈ X of problem (4.6) in the form

u+ = Nα;Ω+ f̃+ + w+, π+ = Qα;Ω+ f̃+ + p+ in Ω+, (4.17)

u− = NΩ− f̃− + w−, π− = QΩ− f̃− + p− in Ω−. (4.18)

Here Nα;Ω+ f̃+ and Qα;Ω+ f̃+ are the Newtonian velocity and pressure potentials with the density

f̃+ ∈ H̃−1(Ω+)3, which correspond to the Brinkman system in Ω+, see (3.12). Therefore,

4Nα;Ω+
f̃+ − αNα;Ω+

f̃+ −∇Qα;Ω+
f̃+ = f̃+, div

(
Nα;Ω+

f̃+

)
= 0 in Ω+, (4.19)

and by (A.28) and (A.29),

Nα;Ω+ f̃+ ∈ H1
div(Ω+)3, Qα;Ω+ f̃+ ∈ L2(Ω+). (4.20)

Similarly, the Newtonian velocity potential NΩ− f̃− for the Stokes system in Ω− and its corresponding

pressure potential QΩ− f̃− satisfy the equations

4NΩ− f̃− −∇QΩ− f̃− = f̃−, div
(
NΩ− f̃−

)
= 0 in Ω−, (4.21)

and by (A.8),

NΩ− f̃− ∈ H1
div(Ω−)3, QΩ− f̃− ∈ L2(Ω−) (4.22)
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Thus, (v+, π+,v−, π−) given by (4.17) and (4.18) is a solution of the Poisson problem of transmis-
sion type (4.6) in the space X if and only if (w+, p+,w−, p−) ∈ X satisfies the following transmission
problem for the Stokes and Brinkman systems

4w+ − αw+ −∇p+ = 0 in Ω+,
4w− −∇p− = 0 in Ω−,
γ+w+ − γ−w− = h00 on ∂Ω,
t+
α (w+, p+)− µt−0 (w−, p−) + 1

2P (γ−w− + γ+w+) = g00 on ∂Ω,

(4.23)

where

h00 := h0 − γ+

(
Nα;Ω+ f̃+

)
+ γ−

(
NΩ− f̃−

)
, (4.24)

g00 := g0 − t+
α

(
Nα;Ω+ f̃+,Qα;Ω+ f̃+; f̃+

)
+ µt−0

(
NΩ− f̃−,QΩ− f̃−; f̃−

)
− 1

2
P
(
γ+

(
Nα;Ω+ f̃+

)
+ γ−

(
NΩ− f̃−

))
. (4.25)

By Lemma 2.1 and (4.20), γ+

(
Nα;Ω+ f̃+

)
∈ H

1
2 (∂Ω)3, while by (4.22) and continuity of the

exterior trace operator γ− : H1(Ω−)3 → H
1
2 (∂Ω)3 we obtain that γ−

(
NΩ− f̃−

)
∈ H 1

2 (∂Ω)3. Then

the assumption h0 ∈ H
1
2 (∂Ω)3 implies h00 ∈ H

1
2 (∂Ω)3. Since g0 ∈ H−

1
2 (∂Ω)3 and P ∈ L∞(∂Ω)3×3,

Lemmas 2.5 and 2.9 imply g00 ∈ H−
1
2 (∂Ω)3.

Next, we look for unknown fields w± and p± in terms of the following layer potentials

w+ = W
α;∂Ω

Φ + V
α;∂Ω

ϕ, p+ = Qd
α;∂Ω

Φ +Qs
α;∂Ω

ϕ in Ω+, (4.26)

w− = W
∂Ω

Φ + V
∂Ω
ϕ, p− = Qd

∂Ω
Φ +Qs

∂Ω
ϕ in Ω−, (4.27)

with unknown densities (Φ,ϕ)
>∈H 1

2 (∂Ω)3×H− 1
2 (∂Ω)3. Note that the function set (w+, p+,w−, p−)

satisfies the domain equations in the first two lines of transmission problem (4.23) and belongs to X
due to the mapping properties (A.12), (A.13), (A.36) and (A.37).

By (A.15), (A.16), (A.40) and (A.41), and the first transmission condition in (4.23) we obtain

(−I + Kα,0;∂Ω) Φ + Vα,0;∂Ωϕ = h00 on ∂Ω, (4.28)

where the complementary single- and double-layer potential operators

Vα,0;∂Ω := Vα;∂Ω − V∂Ω : H−
1
2 (∂Ω)3 → H

1
2 (∂Ω)3 (4.29)

Kα,0;∂Ω := Kα;∂Ω −K∂Ω : H
1
2 (∂Ω)3 → H

1
2 (∂Ω)3 (4.30)

are compact (see [34, Theorem 3.1]).
Now the jump relations (A.17), (A.18), (A.42) and (A.43), and the second transmission condition

in (4.23) lead to the equation(1

2
(1 + µ)I + (1− µ)K∗∂Ω + K∗α,0;∂Ω

)
ϕ+

(
(1− µ)D∂Ω + Dα,0;∂Ω

)
Φ

+
1

2
P
(

(Vα;∂Ω + V∂Ω)ϕ+ (Kα;∂Ω + K∂Ω) Φ
)

= g00 on ∂Ω, (4.31)

where the complementary layer potential operators

Dα,0;∂Ω := Dα;∂Ω −D∂Ω : H
1
2 (∂Ω)3 → H−

1
2 (∂Ω)3, (4.32)

K∗α,0;∂Ω := K∗α;∂Ω −K∗∂Ω : H−
1
2 (∂Ω)3 → H−

1
2 (∂Ω)3, (4.33)

are linear and compact, and (4.33) is the adjoint of the complementary double-layer potential operator

Kα,0;∂Ω : H
1
2 (∂Ω)3 → H

1
2 (∂Ω)3 (see again [34, Theorem 3.1]).

Now we set X := H
1
2 (∂Ω)3 ×H− 1

2 (∂Ω)3.
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Then the transmission problem (4.23) reduces to the system of equations (4.28) and (4.31), which
can be written in the following matrix form

Tα;µ(Φ,ϕ)> = D in X, (4.34)

with unknown (Φ,ϕ)> ∈ X, where Tα;µ : X→ X is the matrix operator

Tα;µ :=

(
−I + Kα,0;∂Ω Vα,0;∂Ω

(1− µ)D∂Ω + Dα,0;∂Ω + 1
2P(Kα;∂Ω+K∂Ω) Kµ;∂Ω+K∗α,0;∂Ω+ 1

2P (Vα;∂Ω+V∂Ω)

)
(4.35)

and Kµ;∂Ω : H−
1
2 (∂Ω)3 → H−

1
2 (∂Ω)3 is the operator given by

Kµ;∂Ω :=
1

2
(1 + µ)I + (1− µ)K∗∂Ω. (4.36)

In addition, D := (h00,g00)
> ∈ X. The operator Tα;µ : X → X can be written as Tα;µ = Tµ + Cα;0,

where Tµ : X→ X and Cα;0 : X→ X are the operators defined by

Tµ :=

(
−I 0

(1− µ)D∂Ω Kµ;∂Ω

)
, (4.37)

Cα;0 :=

(
Kα,0;∂Ω Vα,0;∂Ω

Dα,0;∂Ω + 1
2P(Kα;∂Ω+K∂Ω) K∗α,0;∂Ω + 1

2P (Vα;∂Ω + V∂Ω)

)
. (4.38)

We now show that the operator Tµ : X→ X is an isomorphism for any µ > 0.

(i) If µ = 1 then Tµ reduces to the isomorphism

(
−I 0
0 I

)
.

(ii) If µ ∈ (0,+∞) \ {1}, then Kµ;∂Ω = (1 − µ)

(
1

2

1 + µ

1− µ
I + K∗∂Ω

)
and this operator is an

isomorphism whenever µ ∈ (0, 1) (cf., e.g., [57, Theorem 5.3.6, Lemma 11.9.21], [2, Proposition 10.6],
and an interpolation argument, as in the proof of [57, Theorem 10.5.3]). If µ ∈ (1,+∞), such a

property is still valid. Indeed, we have µ−1 ∈ (0, 1), and Kµ;∂Ω = (1−µ)

(
−1

2

1 + µ−1

1− µ−1
I + K∗∂Ω

)
, and

again [57, Theorem 5.3.6] implies that Kµ;∂Ω is an isomorphism.

Consequently, for any µ ∈ (0,+∞) the operator Kµ;∂Ω : H−
1
2 (∂Ω)3 → H−

1
2 (∂Ω)3 given by (4.36)

is an isomorphism, and then the operator Tµ : X→ X given by (4.37) is an isomorphism as well. The
operator Cα;0 : X → X is linear and compact due to the compactness of operators (4.32) and (4.33)

and the compactness of the embedding L2(∂Ω)3 ↪→ H−
1
2 (∂Ω)3. Hence the operator Tα;µ : X → X

given by (4.35) is a Fredholm operator with index zero. We now show that Tα;µ is also one-to-one, i.e.,

Ker {Tα;µ : X→ X} = {0}.

Let
(
Φ0,ϕ0

)> ∈ Ker {Tα;µ : X→ X}, and consider the layer potentials

u0 = Wα;∂ΩΦ0 + Vα;∂Ωϕ
0, π0 = Qdα;∂ΩΦ0 +Qsα;∂Ωϕ

0 in R3 \ ∂Ω, (4.39)

v0 = W∂ΩΦ0 + V∂Ωϕ
0, p0 = Qd∂ΩΦ0 +Qs∂Ωϕ

0 in R3 \ ∂Ω. (4.40)

By Lemma A.4, Lemma A.8 and the embedding L2(Ω−) ⊂ M(Ω−), we have the following
inclusions for the restrictions to Ω±,

(u0, π0) ∈ H1
div(Ω+)3 × L2(Ω+), (u0, π0) ∈ H1

div(Ω−)3 ×M(Ω−), (4.41)

(v0, p0) ∈ H1
div(Ω+)3 × L2(Ω+), (v0, p0) ∈ H1

div(Ω−)3 × L2(Ω−). (4.42)

In addition, the functions
(
u0, π0,v0, p0

)
determine a solution of the homogeneous transmission prob-

lem associated to (4.6) in the space X . Then by Lemma 4.1 we obtain that

u0 = 0, π0 = 0 in Ω+, v0 = 0, p0 = 0 in Ω−. (4.43)
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Now formulas (A.15), (A.17), (A.40) and (A.42) applied to the layer potentials (4.39) and (4.40),
together with (4.43) yield that

γ−u0 = Φ0, γ+v0 = −Φ0 on ∂Ω, (4.44)

t−α (u0, π0) = −ϕ0, t+
0 (v0, p0) = ϕ0 on ∂Ω. (4.45)

Due to the second membership in (4.41) and formula (A.32) we can apply the Green identity

(2.22) with f̃− = 0 for the exterior domain Ω− to obtain by the first relations in (4.44) and (4.45),

2〈E(u0),E(u0)〉Ω− + α〈u0,u0〉Ω− = −〈t−α (u0, π0), γ−u0〉
∂Ω

= 〈ϕ0,Φ0〉
∂Ω
. (4.46)

In addition, Green’s formula (2.22) for α = 0 and the second relations in (4.44) and (4.45), imply that

2〈E(v0),E(v0)〉Ω+ = 〈t+
0 (v0, p0), γ+v0〉

∂Ω
= −〈ϕ0,Φ0〉

∂Ω
. (4.47)

Adding formulas (4.46) and (4.47) we deduce that u0 = 0, π0 = 0 in Ω−. Then the first relations
in (4.44) and (4.45) show that Φ0 = 0, ϕ0 = 0. Therefore, the Fredholm operator of index zero
Tα;µ : X → X is one-to-one and hence an isomorphism, as asserted. Then equation (4.34) has a
unique solution (Φ,ϕ)> ∈ X and the layer potentials (4.26) and (4.27), together with relations (4.17)
and (4.18), determine a solution ((u−, π−), (u+, π+)) ∈ X of the Poisson problem of transmission
type (4.6). By Lemma 4.1, this solution is unique. Moreover, the linearity and boundedness of the
potential operators involved in (4.17), (4.18), (4.26) and (4.27) and of the inverse of the isomorphism
Tα;µ : X → X implies that there exists a linear continuous operator (4.14) delivering the solution. In
addition, the conditions u− ∈ H1

div(Ω−)3 and (2.13) imply that u− vanishes at infinity in the sense
of Leray (4.16). �

Remark 4.3. Because of the involvement of the given function f̃− in the conormal derivative, the left
hand side operator of transmission problem (4.6), as written is generally nonlinear with respect to
((u+, π+), (u−, π−)). In spite of this, the problem can be equivalently reduced to the weak form for a
linear operator (similar, e.g., to the weak formulations for Dirichlet, Neumann and mixed problems in
[51, Section 3.2], [52, Section 5.3]). Moreover, by Theorem 4.2 the operator T : Y → X delivering the
problem solution ((u+, π+), (u−, π−)) ∈ X is linear.

From Theorem 4.2 we can easily deduce the more general assertion, where u∞ may be nonzero.

Theorem 4.4. Let Ω+ := Ω ⊂ R3 be a bounded Lipschitz domain with connected boundary ∂Ω. Let
Ω− := R3 \ Ω be the exterior Lipschitz domain. Let α > 0, µ > 0 and condition (4.7) hold. Then

for
(
f̃+, f̃−,h0,g0,u∞

)
∈ Y∞, the transmission problem (4.6) has a unique solution (u+, π+,u−, π−)

satisfying condition (4.8). Moreover, there exists a constant C ≡ C(Ω+,Ω−,P,α, µ) > 0 such that

‖ (u+, π+,u− − u∞, π−) ‖X ≤ C
∥∥(f̃+, f̃−,h0,g0,u∞

)∥∥
Y∞

, (4.48)

and u− − u∞ vanishes at infinity in the sense of Leray (2.12).

Proof. Let us introduce the new variables v+ = u+, v− = u− − u∞, and write problem (4.6), (4.8)
in the equivalent form

4v+ − αv+ −∇π+ = f̃+|Ω+
in Ω+,

4v− −∇π− = f̃−|Ω− in Ω−,
γ+v+ − γ−v− = h0 + u∞ on ∂Ω,

t+
α (v+, π+; f̃+)− µt−0 (v−, π−; f̃−) + 1

2P (γ−v− + γ+v+) = g0 − 1
2P u∞ on ∂Ω

(4.49)

for (v−, π−,v+, π+) ∈ X , already considered in Theorem 4.2. Since its right hand side includes the
constant vector u∞, it appears in the right-hand side of estimate (4.48). �

Remark 4.5. If f̃− = 0 then by Lemma A.2 the unique solution of transmission problem (4.6) satisfies

(u− − u∞)(x) = O(|x|−1),∇u−(x) = O(|x|−2), π−(x) = O(|x|−2) as |x| → ∞. (4.50)
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5. Transmission problem for the Stokes and Darcy-Forchheimer-Brinkman systems
in complementary Lipschitz domains in weighted Sobolev spaces

We now consider the Poisson problem of transmission type for the Stokes and Darcy-Forchheimer-
Brinkman systems in the complementary Lipschitz domains Ω± in R3,

4u+ − αu+ − k|u+|u+ − β(u+ · ∇)u+ −∇π+ = f̃+|Ω+ in Ω+,

4u− −∇π− = f̃−|Ω− in Ω−,
γ+u+ − γ−u− = h0 on ∂Ω,

t+
α

(
u+, π+; f̃+ + E̊+ (k|u+|u+ + β(u+ · ∇)u+)

)
− µt−0

(
u−, π−; f̃−

)
+ 1

2P (γ−u− + γ+u+) = g0 on ∂Ω,

(5.1)

where E̊± are the operators of extension of functions defined in Ω± by zero to Ω∓. For the definition

of t−0

(
u−, π−; f̃−

)
see also comment below (4.7).

We assume that the given data in (5.1) and a prescribed constant u∞ belong to the space Y∞
defined in (4.5), and that they are sufficiently small in a sense that will be described below. Then
we show the existence and uniqueness of the solution (u+, π+,u−, π−) of transmission problem (5.1),
such that (u+, π+,u− − u∞, π−) belongs to the weighted Sobolev space X introduced in (4.3). Such
a solution tends to the constant u∞ ∈ R3 at infinity in the sense of Leray (2.12). The proof of the
existence and uniqueness result is based on the well-posedness result in Theorem 4.4 and on a fixed
point theorem.

First we show the following result that plays a main role in the proof of the well-posedness (cf.
also [35]-[37]).

Lemma 5.1. Let Ω+ ⊂ R3 be a bounded Lipschitz domain with connected boundary. Let k, β ∈ R be
nonzero constants and

Ik;β;Ω+
(v) := E̊+ (k|v|v + β(v · ∇)v) . (5.2)

Then the nonlinear operators

Ik;β;Ω+
: H1

div(Ω+)3 → L
3
2 (Ω+)3, Ik;β;Ω+ : H1

div(Ω+)3 → H̃−1(Ω+)3

are continuous, positively homogeneous of the order 2, and bounded, in the sense that there exist two
constants c′1 ≡ c′1(Ω+, k, β) > 0 and c1 ≡ c1(Ω+, k, β) > 0 such that

‖Ik;β;Ω+(u)‖
L

3
2 (Ω+)3

≤ c′1‖u‖2H1(Ω+)3 , ‖Ik;β;Ω+(u)‖H̃−1(Ω+)3 ≤ c1‖u‖2H1(Ω+)3 . (5.3)

Moreover,

‖Ik;β;Ω+
(v)− Ik;β;Ω+

(w)‖H̃−1(Ω+)3

≤ c1
(
‖v‖H1(Ω+)3 + ‖w‖H1(Ω+)3

)
‖v−w‖H1(Ω+)3 , ∀ v,w ∈ H1(Ω+)3 (5.4)

with the same constant c1 as in (5.3).

Proof. Since Ω+ is a bounded Lipschitz domain in R3, the Sobolev embedding theorem implies that
the following inclusion

H1(Ω+)3 ↪→ Lq(Ω+)3 (5.5)

is continuous for any 2 ≤ q ≤ 6. Let q′ be such that
1

q′
:= 1− 1

q
. Since embedding (5.5) has also dense

range, a duality argument implies the continuity of the embedding

Lq
′
(Ω+)3 ↪→ H̃−1(Ω+)3, (5.6)

in the sense that E̊+u ∈ H̃−1(Ω+)3 for any u ∈ Lq′(Ω+)3,
6

5
≤ q′ ≤ 2, and there exists a constant

Cq > 0 such that

‖E̊+u‖H̃−1(Ω+)3 ≤ Cq‖u‖Lq′ (Ω+)3 . (5.7)
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By (5.5) with q = 4 and by the Hölder inequality there exists a constant c′ ≡ c′(Ω+) > 0 such that

‖ |v|w ‖L2(Ω+)3 ≤ ‖v‖L4(Ω+)3‖w‖L4(Ω+)3 ≤ c′‖v‖H1(Ω+)3‖w‖H1(Ω+)3 , ∀ v, w ∈ H1(Ω+)3. (5.8)

Hence, we obtain that |v|w ∈ L2(Ω+)3 for all v, w ∈ H1(Ω+)3. Moreover, (5.7), (5.8) imply that

the positively homogeneous operator b of order 2 defined by b(v,w) := E̊+(|v|w) maps H1(Ω+)3 ×
H1(Ω+)3 to H̃−1(Ω+)3 and satisfies the inequality

‖b(v,w)‖H̃−1(Ω+)3 ≤ c‖v‖H1(Ω+)3‖w‖H1(Ω+)3 , (5.9)

for some constant c ≡ c(Ω+) > 0. Thus, the following operators are bounded

b : H1(Ω+)3 ×H1(Ω+)3 → L2(Ω+)3, b : H1(Ω+)3 ×H1(Ω+)3 → H̃−1(Ω+)3.

Moreover, the embedding (5.5) with q = 6 and the Hölder inequality imply that there exists a
constant c′0 ≡ c′0(Ω+) > 0 such that

‖(v · ∇)w‖
L

3
2 (Ω+)3

≤ ‖v‖L6(Ω+)3‖∇w‖L2(Ω+)3 ≤ c′0‖v‖H1(Ω+)3‖w‖H1(Ω+)3 ∀ v, w ∈ H1(Ω+)3. (5.10)

Hence, (v ·∇)w ∈ L 3
2 (Ω+)3 for all v, w ∈ H1(Ω+)3, and by (5.7) and (5.10) for the bi-linear operator

n(v,w) := E̊+(v · ∇)w, there exists a constant c0 ≡ c0(Ω+) > 0 such that

‖n(v,w)‖H̃−1(Ω+)3 ≤ c0‖v‖H1(Ω+)3‖w‖H1(Ω+)3 , ∀ v,w ∈ H1(Ω+)3. (5.11)

Thus, the operators

n : H1(Ω+)3 ×H1(Ω+)3 → L
3
2 (Ω+)3, n : H1(Ω+)3 ×H1(Ω+)3 → H̃−1(Ω+)3

are bounded in the sense of (5.10) and (5.11).
By definition (5.2), the operator Ik;β;Ω+ is positively homogeneous of the order 2 and since

Ik;β;Ω+
(v) = kb(v,v) + βn(v,v), it is also bounded in the sense of (5.3) due to (5.8)-(5.11) with

c′1 = |k|c′ + |β|c′0 and c1 = |k|c+ |β|c0. (5.12)

We now prove (5.4) and thus the continuity of the operator Ik;β;Ω+
. By (5.9) and (5.11),

‖Ik;β;Ω+
(v)− Ik;β;Ω+

(w)‖H̃−1(Ω+)3

≤ |k|‖ |v|v − |w|w ‖H̃−1(Ω+)3 + |β|‖(v · ∇)v − (w · ∇)w‖H̃−1(Ω+)3

≤ |k|‖(|v| − |w|)v + |w|(v −w)‖H̃−1(Ω+)3 + |β|‖((v −w) · ∇)v + (w · ∇)(v −w)‖H̃−1(Ω+)3

≤ (|k|c+ |β|c0)‖v −w‖H1(Ω+)3

(
‖v‖H1(Ω+)3 + ‖w‖H1(Ω+)3

)
, ∀ v,w ∈ H1

div(Ω+)3, (5.13)

which, due to the second equality in (5.12), proves (5.4). Thus, ‖Ik;β;Ω+
(v)−Ik;β;Ω+

(w)‖H̃−1(Ω+)3 →
0 as ‖v − w‖H1(Ω+)3 → 0, and the continuity of the operator Ik;β;Ω+

: H1
div(Ω+)3 → H̃−1(Ω+)3

follows. �

Theorem 5.2. Let Ω+ := Ω ⊂ R3 be a bounded Lipschitz domain with connected boundary. Let Ω− :=
R3 \ Ω. Let α > 0, µ > 0 and k, β ∈ R be given constants and P ∈ L∞(∂Ω)3×3 be a symmetric
matrix-valued function which satisfies nonnegativity condition (4.7). Then there exist two constants
ζ > 0 and η > 0 depending only on Ω+, Ω−, P, α, k, β and µ, with the property that for all given

data
(
f̃+, f̃−,h0,g0,u∞

)
∈ Y∞, which satisfy the condition∥∥(f̃+, f̃−,h0,g0,u∞)

∥∥
Y∞
≤ ζ, (5.14)

the transmission problem for the Stokes and Darcy-Forchheimer-Brinkman systems (5.1) has a unique
solution (u+, π+,u−, π−) such that (u+, π+,u− − u∞, π−) ∈ X and

‖(u+, π+,u− − u∞, π−)‖X ≤ η. (5.15)

Moreover, the solution depends continuously on the given data, and satisfies the estimate

‖(u+, π+,u− − u∞, π−)‖X ≤ C
∥∥(f̃+, f̃−,h0,g0,u∞)

∥∥
Y∞

(5.16)
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with some positive constant C depending only on Ω+, Ω−, P, α and µ, while u− − u∞ vanishes at
infinity in the sense of Leray (2.12).

Proof. Let us introduce the new variables

v+ = u+, v− = u− − u∞, (5.17)

and write the nonlinear problem (5.1) in the following equivalent form

4v+ − αv+ −∇π+ = f̃+|Ω+
+ Ik;β;Ω+

(v+)|Ω+
in Ω+,

4v− −∇π− = f̃−|Ω− in Ω−,
γ+v+ − γ−v− = h0 + u∞ on ∂Ω,

t+
α

(
v+, π+; f̃+ + Ik;β;Ω+

(v+)
)
− µt−0

(
v−, π−; f̃−

)
+ 1

2P (γ−v− + γ+v+) = g0 − 1
2P u∞ on ∂Ω.

(5.18)

Next we construct a nonlinear operator U+ that maps a closed ball Bη of the space H1
div(Ω+)3

to Bη and is a contraction on Bη. Then the unique fixed point of U+ will determine a solution of the
nonlinear problem (5.18).

• Construction of a nonlinear operator U+

For a fixed v+ ∈ H1
div(Ω+)3, let us consider the following linear Poisson problem of transmission

type for the Stokes and Brinkman systems in the unknown (v0
+, π

0
+), (v0

−, π
0
−)

4v0
+ − αv0

+ −∇π0
+ = f̃+|Ω+

+ Ik;β;Ω+
(v+)|Ω+

in Ω+,

4v0
− −∇π0

− = f̃−|Ω− in Ω−,
γ+v0

+ − γ−v0
− = h0 + u∞ on ∂Ω,

t+
α

(
v0

+, π
0
+; f̃+ + Ik;β;Ω+

(v+)
)
− µt−0 (v0

−, π
0
−; f̃−)

+ 1
2P

(
γ−v0

− + γ+v0
+

)
= g0 − 1

2P u∞ on ∂Ω.

(5.19)

Note that h0 + u∞ ∈ H
1
2 (∂Ω)3 and g0 − 1

2P u∞∈ H−
1
2 (∂Ω)3, while E̊+(k|v+|v+ + β(v+ · ∇)v+) ∈

H̃−1(Ω+)3 by Lemma 5.1. Then Theorem 4.4 implies that problem (5.19) has a unique solution(
v0

+, π
0
+,v

0
−, π

0
−
)

= (U+(v+), P+(v+), U−(v+), P−(v+))

:= T
(

f̃+|Ω+
+ Ik;β;Ω+

(v+)|Ω+
, f̃−|Ω− , h0 + u∞, g0 −

1

2
P u∞

)
∈ X , (5.20)

where the linear continuous operator T : Y → X has been introduced in Theorem 4.2 (see (4.14)),
and X and Y are the spaces defined in (4.3), (4.4). Hence, due to Lemma 5.1 and Theorem 4.4, for

fixed f̃±,h0,g0,u∞, the nonlinear operators defined by (5.20),

(U+, P+, U−P−) : H1
div(Ω+)3 → X (5.21)

are continuous and bounded, in the sense that there exists a constant c∗ ≡ c∗(Ω+,Ω−,P, α, µ) > 0
such that∥∥(U+(v+),P+(v+), U−(v+), P−(v+)

)∥∥
X ≤ c∗

∥∥∥(f̃+ + Ik;β;Ω+(v+), f̃−,h0,g0,u∞

)∥∥∥
Y∞

≤ c∗
(∥∥(f̃+, f̃−,h0,g0,u∞

)∥∥
Y∞

+ ‖Ik;β;Ω+
(v+)‖H̃−1(Ω+)3

)
≤ c∗

∥∥(f̃+, f̃−,h0,g0,u∞
)∥∥
Y∞

+ c∗c1‖v+‖2H1(Ω+)3 , ∀ v+ ∈ H1
div(Ω+)3, (5.22)

where c1 ≡ c1(Ω+, k, β) > 0 is the constant of Lemma 5.1. In addition, in view of (5.20), we obtain

4U+(v+)−αU+(v+)−∇P+(v+) = f̃+|Ω+
+ Ik;β;Ω+

(v+)|Ω+
in Ω+,

4U−(v+)−∇P−(v+) = f̃−|Ω− in Ω−,

γ+ (U+(v+))− γ− (U−(v+)) = h0 + u∞ ∈ H
1
2 (∂Ω)3,

t+
α

(
U+(v+), P+(v+); f̃+ + Ik;β;Ω+

(v+)
)
− µt−0

(
U−(v+), P−(v+); f̃−

)
+ 1

2P (γ+ (U+(v+)) + γ−U−(v+)) = g0 − 1
2P u∞ ∈ H−

1
2 (∂Ω)3.

(5.23)
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Therefore, if we can show that the nonlinear operator U+ has a fixed point v+ ∈ H1
div(Ω+)3, then it

solves the equation U+(v+) = v+ and together with v− = U−(v+), π± = P±(v+) it defines a solution
of nonlinear transmission problem (5.18) in the space X . In order to show that U+ has a fixed point,
we prove that U+ maps some closed ball Bη in H1

div(Ω+)3 to the same closed ball Bη, and that U+ is
a contraction on Bη. Let us introduce the constants

ζ :=
3

16c1c2∗
> 0, η :=

1

4c1c∗
> 0 (5.24)

(see also [17, Lemma 29], [62, Theorem 5.1]), and the closed ball

Bη :=
{
v+ ∈ H1

div(Ω+)3 : ‖v+‖H1(Ω+)3 ≤ η
}
. (5.25)

Also we assume that the given data satisfy the condition∥∥(f̃+, f̃−,h0,g0,u∞
)∥∥
Y∞
≤ ζ. (5.26)

Then by (5.22), (5.24)-(5.26) we deduce the inequality

‖ (U+(v+), P+(v+), U−(v+), P−(v+)) ‖X ≤
1

4c1c∗
= η, ∀ v+ ∈ Bη. (5.27)

Inequality (5.27) shows that ‖U+(v+)‖H1(Ω+)3 ≤ η, ∀ v+ ∈ Bη, i.e., U+ maps Bη to Bη, as asserted.

Next we show that the map U+ is Lipschitz continuous on Bη. Indeed, by using expression (5.20)

for U+, given in terms of the linear and continuous operator T and fixed data
(
f̃+, f̃−,h0,g0,u∞

)
, we

have for two arbitrary functions v+,w+ ∈ Bη,

‖U+(v+)− U+(w+)‖H1(Ω+)3 ≤ c∗‖Ik;β;Ω+
(v+)− Ik;β;Ω+

(w+)‖H̃−1(Ω+)3

≤ c∗c1
(
‖v+‖H1(Ω+)3 + ‖w+‖H1(Ω+)3

)
‖v+−w+‖H1(Ω+)3

≤ 2ηc∗c1‖v+−w+‖H1(Ω+)3 =
1

2
‖v+−w+‖H1(Ω+)3 , ∀ v+,w+ ∈ Bη, (5.28)

where the first inequality is implied by the continuity of the operator T , while the second one follows
from inequality (5.4) in Lemma 5.1, and c∗, c1 are the constants from (5.22). Hence, U+ : Bη → Bη

is a contraction.
• The existence of a solution of the nonlinear problem (5.1)
The Banach-Caccioppoli fixed point theorem implies that there exists a unique fixed point

v+ ∈ Bη of U+, i.e., U+(v+) = v+. Then v+ together with the functions v− = U−(v+) and π± =
P±(v+) given by (5.20), determine a solution of the nonlinear problem (5.18) in the space X =(
H1

div(Ω+)3 × L2(Ω+)
)
×
(
H1

div(Ω−)3 × L2(Ω−)
)
. In addition, since v− ∈ H1

div(Ω−)3, v− vanishes at
infinity in the sense of Leray (2.13). Further, the fields (u+, π+,u−, π−), where u+ and u− are given
by (5.17), determine a solution of the nonlinear transmission problem of Poisson type (5.1) satisfying
(u+, π+,u− − u∞, π−) ∈ X . In addition, by (5.27) and by the expressions u− − u∞ = v− = U−(v+)
and π± = P±(v+), we deduce that such a solution satisfies inequality (5.15). Also, u− − u∞ vanishes
at infinity in the sense of Leray, i.e., u− − u∞ satisfies condition (2.12).

Since the solution v+ belongs to the closed ball Bη, we obtain that c∗c1‖v+‖H1(Ω+)3 ≤ c∗c1η =
1

4
.

Then inequality (5.22) gives

‖v+‖H1(Ω+)3 + ‖π+‖L2(Ω+) + ‖v−‖H1(Ω−)3 + ‖π−‖L2(Ω−)

= ‖(v+, π+,v−, π−)‖X ≤ c∗
∥∥(f̃+, f̃−,h0,g0,u∞

)∥∥
Y∞

+
1

4
‖v+‖H1(Ω+)3 , (5.29)

which implies ‖v+‖H1(Ω+)3 ≤ 4

3
c∗
∥∥(f̃+, f̃−,h0,g0,u∞

)∥∥
Y∞

. Substituting this back to (5.29) and using

(5.17), we obtain the desired estimate (5.16) with C =
4

3
c∗.

• The uniqueness of solution of the nonlinear problem (5.1)
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We now show the uniqueness of the solution (u+, π+,u−, π−) of the nonlinear transmission prob-
lem (5.1), satisfying (u+, π+,u− − u∞, π−) ∈ X and inequality (5.15). Assume that

(
u′+, π

′
+,u

′
−, π

′
−
)

is another solution of problem (5.1), such that
(
u′+, π

′
+,u

′
− − u∞, π

′
−
)
∈ X , and that such a solution

satisfies inequality (5.15). Hence for (v′+,v
′
−) = (u′+,u

′
− − u∞), we obtain v′+ ∈ Bη. Since v′+ ∈ Bη,

we obtain that U+(v′+) ∈ Bη, where
(
U+(v′+), P+(v′+), U−(v′+), P−(v′+)

)
are given by (5.20) and

satisfy problem (5.23) with v+ replaced by v′+. Then by (5.18) (written in terms of
(
v′+, π

′
+,v

′
−, π

′
−
)
)

and (5.23) we obtain the linear transmission problem
(4− αI)

(
U+(v′+)− v′+

)
−∇(P+(v′+)− π′+) = 0 in Ω+,

4
(
U−(v′+)− v′−

)
−∇(P−(v′+)− π′−) = 0 in Ω−,

Tr+
(
U+(v′+)− v′+

)
− Tr−

(
U−(v′+)− v′−

)
= 0 on ∂Ω,

t+
α

(
U+(v′+)− v′+, P+(v′+)− π′+

)
− µt−0

(
U−(v′+)− v′−, P−(v′+)− π′−

)
+ 1

2P
(
Tr+

(
U+(v′+)− v′+

)
+ Tr−

(
U−(v′+)− v′−

))
= 0 on ∂Ω,

which, in view of the well-posedness result in Theorem 4.4, has only the trivial solution in the space X ,
i.e.,

(
U+(v′+), U−(v′+)

)
= (v′+,v

′
−) and P±(v′+) = π′±. Therefore, v′+ is a fixed point of U+. However,

U+ : Bη → Bη given by (5.20) is a contraction, and, thus, it has a unique fixed point v+ in Bη.
Consequently, v′+ = v+. In addition, v′− = v− and also π′± = π±.

• The continuity of the solution with respect to the given data

Since the unique solution (u+, π+,u−, π−) of nonlinear problem (5.1) is expressed in terms of the
unique fixed point of the contraction U+ : Bη → Bη, which is a continuous mapping with respect to

the data
(
f̃+, f̃−,h0,g0

)
∈ Y due to the continuity of the operator T , we deduce that (u+, π+,u−, π−)

depends continuously on the given data (cf., e.g., [33, Chapter XVI, §1, Theorem 3]). �

Remark 5.3. Note that in Theorem 5.2 we do not need to assume the conditions k > 0, β > 0 on the
coefficients of the nonlinear terms, as is normally done in a variational approach to such problems.

Appendix A. Behaviour at infinity and properties of potentials

The following assertion characterizes the behavior at infinity of functions in the space H1(Ω−)
(cf. [7, Lemma 2.1 and Definition 2.2]).

Lemma A.1. Let Ω ⊂ R3 be a bounded Lipschitz domain with connected boundary. Let Ω− := R3 \ Ω
be the corresponding exterior Lipschitz domain. Assume that u ∈ D′(Ω−) and that ∇u ∈ L2(Ω−)3.
Then there exists a unique constant u∞ ∈ R such that u− u∞ ∈ H1(Ω−). Moreover,

u∞ =
1

4π
lim
r→∞

∫
S2

u(ry)dσy,

where S2 is the unit sphere in R3. In addition, u− u∞ ∈ L6(Ω−), and

‖u− u∞‖L6(Ω−) ≤ C‖∇u‖L2(Ω−)3 , lim
r→∞

∫
S2

|u(ry)− u∞|dσy = 0. (A.1)

Let us show the behavior at infinity of a solution of the homogeneous Stokes system in the
weighted Sobolev space H1(Ω−)3 × L2(Ω−).

Lemma A.2. Let Ω := Ω+ ⊂ R3 be a bounded Lipschitz domain with connected boundary and Ω− :=
R3 \ Ω. If the pair (v, p) ∈ H1(Ω−)3 × L2(Ω−) satisfies the equations

4v −∇p = 0, div v = 0 in Ω−, (A.2)

then

v(x) = O(|x|−1), ∇v(x) = O(|x|−2), p(x) = O(|x|−2) as |x| → ∞. (A.3)
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Proof. First, note that the exterior Dirichlet problem for the Stokes system
4u−∇π = 0, div u = 0 in Ω−,

γ−u = γ−v ∈ H 1
2 (∂Ω)3,

u(x) = O(|x|−1), ∇u(x) = O(|x|−2), π(x) = O(|x|−2) as |x| → ∞,
(A.4)

has a unique solution (u, π) ∈ H1
loc(Ω−)3 × L2

loc(Ω−) (see, e.g., [57, Theorem 9.2.4]). We now show
that (u, π) ∈ H1(Ω−)3 × L2(Ω−). Indeed, by the first asymptotic condition in (A.4), there exist two
constants M,R0 > 0 such that |x|2|u(x)|2 ≤M if |x| ≥ R0. Moreover, we can assume that Ω ⊂ BR0

,
where BR0 is the ball in R3 of radius R0 and center 0 (assumed to be a point in Ω). Then by exploiting

the inequalities ρ ≥ 1, ρ ≥ |x| and

∫
R3\BR0

1

|x|4
dx <∞, we obtain that

∫
Ω−

1

ρ2
|u(x)|2dx =

∫
Ω−

⋂
BR0

1

ρ2
|u(x)|2dx +

∫
R3\BR0

1

ρ2
|u(x)|2dx, (A.5)

≤
∫

Ω−
⋂
BR0

|u(x)|2dx +M

∫
R3\BR0

1

|x|4
dx <∞.

Hence, u ∈ L2(ρ−1; Ω−)3. By exploiting the last two asymptotic assumptions in (A.4) and a similar
argument as above, we deduce that ∇u ∈ L2(Ω−)3 and π ∈ L2(Ω−). Therefore, (u, π) ∈ H1(Ω−)3 ×
L2(Ω−). In addition, (u, π) is a solution of the exterior Dirichlet problem{

4w −∇q = 0, div w = 0 in Ω−,

γ−(w) = γ−(v) ∈ H 1
2 (∂Ω)3 (A.6)

in the space H1(Ω−)3 × L2(Ω−). The pair (v, p) ∈ H1(Ω−)3 × L2(Ω−) satisfies the same problem
(A.6). Then the uniqueness of the solution of the exterior Dirichlet problem for the Stokes system
(A.6) in the space H1(Ω−)3 × L2(Ω−) (cf. [27, Theorem 3.4]) implies that v = u and p = π in Ω−.
Finally, the asymptotic relations in (A.4) satisfied by u and π yield formulas (A.3), as asserted. �

For α = 0, and an exterior domain Ω− (or the whole R3), the weighted Sobolev spaces are more
suitable than the standard Sobolev spaces, while in Ω+ the standard Sobolev spaces coincide with
the weighted ones. In these cases we have the following mapping properties similar to the ones for the
potentials of the Laplace operator available, e.g., in [16, Theorem 4.1] and [42, Theorem 3.2].

Lemma A.3. The following Newtonian velocity and pressure potential operators for the Stokes system
given by (3.9) and (3.10) are linear and continuous,

N R3 : H−1(R3)3 → H1(R3)3, QR3 : H−1(R3)3 → L2(R3), (A.7)

NΩ± : H̃−1(Ω±)3 → H1(Ω±)3, QΩ± : H̃−1(Ω±)3 → L2(Ω±), (A.8)

NΩ+
: H̃−1(Ω+)3 → H1(Ω+)3, QΩ+

: H̃−1(Ω+)3 → L2(Ω+). (A.9)

Proof. The continuity of the operators in (A.7) follow from [3, Propositions 4.6, 4.7]. Since H̃−1(Ω±)3

are subspaces of H−1(R3)3 and NΩ± = rΩ±N R3 , QΩ± = rΩ±QR3 , we deduce the continuity of

the operators in (A.8). On the other hand, since H̃−1(Ω+)3 coincides with H̃−1(Ω+)3 and H1(Ω+)3

coincides with H1(Ω+)3, with equivalent norms, (A.8) also implies the well-known continuity of the
operators in (A.9). �

In the following lemma we collect the main properties of layer potentials for the Stokes system
defined in (3.13)-(3.15).

Lemma A.4. Let Ω := Ω+ ⊂ R3 be a bounded Lipschitz domain with connected boundary ∂Ω. Let
Ω− := R3 \ Ω.
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(i) The following operators are linear and bounded,

(V∂Ω) |Ω+ :H−
1
2 (∂Ω)3 → H1(Ω+)3, (Qs∂Ω) |Ω+ :H−

1
2 (∂Ω)3→ L2(Ω+), (A.10)

(W∂Ω) |Ω+
: H

1
2 (∂Ω)3 → H1(Ω+)3,

(
Qd∂Ω

)
|Ω+

:H
1
2 (∂Ω)3 → L2(Ω+), (A.11)

(V∂Ω) |Ω− : H−
1
2 (∂Ω)3 → H1(Ω−)3, (Qs∂Ω) |Ω− : H−

1
2 (∂Ω)3 → L2(Ω−), (A.12)

(W∂Ω) |Ω− : H
1
2 (∂Ω)3 → H1(Ω−)3,

(
Qd∂Ω

)
|Ω− : H

1
2 (∂Ω)3 → L2(Ω−) (A.13)

(W∂Ω) |Ω− : H
1
2 (∂Ω)3 → H1(Ω−)3. (A.14)

(ii) Let h ∈ H 1
2 (∂Ω)3 and g ∈ H− 1

2 (∂Ω)3. Then the following relations hold a.e. on ∂Ω,

γ+

(
V∂Ωg

)
= γ−

(
V∂Ωg

)
=: V∂Ωg, (A.15)

1

2
h + γ+(W∂Ωh) = −1

2
h + γ−(W∂Ωh) =: K∂Ωh, (A.16)

− 1

2
g + t+

0 (V∂Ωg,Qs∂Ωg) =
1

2
g + t−0 (V∂Ωg,Qs∂Ωg) =: K∗∂Ωg, (A.17)

t+
0

(
W∂Ωh,Qd∂Ωh

)
= t−0

(
W∂Ωh,Qd∂Ωh

)
=: D∂Ωh, (A.18)

where K∗∂Ω is the transpose of K∂Ω, and the following operators are linear and bounded,

V∂Ω : H−
1
2 (∂Ω)3 → H

1
2 (∂Ω)3, K∂Ω : H

1
2 (∂Ω)3 → H

1
2 (∂Ω)3, (A.19)

K∗∂Ω : H−
1
2 (∂Ω)3 → H−

1
2 (∂Ω)3, D∂Ω : H

1
2 (∂Ω)3 → H−

1
2 (∂Ω)3. (A.20)

Proof. All the above mentioned mapping properties of the layer potential operators for the Stokes
system in Sobolev spaces on bounded Lipschitz domains, as well as their jump relations across a
Lipschitz boundary, are well known, and we refer the reader to, e.g., [24], [30], [57, Propositions
4.2.5, 4.2.9, Corollary 4.3.2, Theorems 10.5.1, 10.5.3], [63, Propositions 9.1, 9.2]. The continuity of the
operators (A.12) and (A.13) in weighted spaces in the exterior domains follow, e.g., from Propositions
5.2 and 6.2 in [63] deduced from the corresponding transmission problem solutions analyzed by the
variational approach (cf. also [12], [16, Theorem 4.1], [42, Theorem 4.1] for the Laplace and some
scalar operators in weighted Sobolev spaces). Let us consider (A.14). Due to continuity of the first
operator in (A.13), we only need to prove continuity of the operator

(W∂Ω) |Ω− : H
1
2 (∂Ω)3 → L2(Ω−)3. (A.21)

By (3.4), (3.13) and (3.14),(
W∂Ωh

)
k
(x) = ∂k

(
V4(ν · h)

)
(x)− ∂j

(
V∂Ω(ν

j
h)
)
k
(x)− ∂j

(
V∂Ω(hjν)

)
k
(x),

where V4 : L2(∂Ω)→ H1(Ω−) is the single-layer potential for the Laplace operator, i.e.,

(V4g)(x) := −
∫
∂Ω

1

4π

1

|x− y|
g(y)dσy, x ∈ R3 \ ∂Ω, (A.22)

which is continuous (cf. [16, Theorem 4.1], [42, Theorem 4.1]). If hi ∈ H
1
2 (∂Ω), then hiνj ∈ L2(∂Ω) ⊂

H−
1
2 (∂Ω), and continuity of operator (A.22) and of the first operator in (A.12) imply continuity of

operator (A.21).
Note also that continuity of the single layer operators (A.10) and (A.12) can be shown in a more

direct way, similar to the proof of Theorem 1 in [18] for the scalar case. Indeed, let γ : H1(R3)3 →
H

1
2 (∂Ω)3 and γ′ : H−

1
2 (∂Ω)3 → H−1(R3)3 be the continuous trace operator and its continuous

transpose operator, respectively. The volume potential operator N R3 : H−1(R3)3 → H1(R3)3 is also
continuous (see (A.7) in Lemma A.3). Then the single-layer potential operator can be presented as
V∂Ω = N R3γ′ and hence the operators

V∂Ω : H−
1
2 (∂Ω)3 → H1(R3)3, (V∂Ω) |Ω± : H−

1
2 (∂Ω)3 → H1(Ω±)3
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are continuous. Since H1(Ω+)3 = H1(Ω+)3, continuity of the first operators in (A.10) and (A.12)
also follows. The pressure potential operator can be written as Qs∂Ω = QR3γ′, where the operator
QR3 : H−1(R3)3 → L2(R3) is continuous by (A.7) in Lemma A.3. This implies continuity of the
second operators in (A.10) and (A.12). �

Let H1
div(Ω±)3 := {u ∈ H1(Ω±)3 : div u = 0 in Ω±}. Since the double layer potential for the

Stokes system is divergence-free, the jump property (A.16) and continuity of the first operator in
(A.11) and of operator (A.14) imply the following assertion.

Lemma A.5. Let Ω+ ⊂ R3 be a bounded Lipschitz domain with connected boundary and Ω− := R3\Ω+.

If h ∈ H 1
2 (∂Ω)3, then there exists u ∈ H1

div(Ω±)3 such that γ+u− γ−u = −h on ∂Ω.

For Ω′ being Ω+, Ω− or R3, let us introduce the following Hilbert space and its norm,

M(Ω′) :={q ∈ L2(ρ−1; Ω′) : ∇q ∈ H−1
curl(Ω

′)3}, ‖q‖2M(Ω′) := ‖ρ−1q‖2L2(Ω′)+‖∇q‖2H−1(Ω′)3 , (A.23)

where H−1
curl(Ω

′)3 := {f ∈ H−1(Ω′)3 : curl f = 0}. Let M∗(Ω′) denote the space dual to M(Ω′). Then
we have the following continuous embeddings chain:

L2(ρ; Ω′) ⊂M∗(Ω′) ⊂ L2(Ω′) ⊂M(Ω′) ⊂ L2(ρ−1; Ω′)⊂ L2
loc(Ω′). (A.24)

Note that the function ρ−1(x) = (1 + |x|2)−1/2 belongs to H1(R3) ⊂ M(R3) but does not belong to
L2(R3), thus proving that L2(R3) and M(R3) do not coincide (and hence L2(Ω−) and M(Ω−) do not
coincide either). For Ω′ = Ω+ all the spaces in (A.24) evidently coincide with L2(Ω+) with equivalent
norms.

Lemma A.6. (i) If q ∈M(R3), then q|Ω± ∈M(Ω±).

(ii) If q± ∈M(Ω±), then grad E̊±q± ∈ H̃−1
curl(Ω±)3 and E̊+q+ + E̊−q− ∈M(R3).

Proof. Item (i) follows from definition of the spaces M(R3) and M(Ω±) in (A.23).

(ii) If q+ ∈M(Ω+) then q+ ∈ L2(Ω+) and evidently grad E̊+q+ ∈ H̃−1(Ω+)3. Suppose now that
q− ∈M(Ω−). Let Br be an open ball of radius r such that Ω+ ⊂ Br, and let χ ∈ D(R3) be such that

suppχ ⊆ B2r, 0 ≤ χ ≤ 1 and χ = 1 in Br. Then E̊−q− = q1 + q2, where q1 := χE̊−q− ∈ H̃0(Ω−), and

thus ∇q1 ∈ H̃−1(Ω−)3, while q2 := (1− χ)E̊−q− = E̊−((1− χ)q−) ∈ L2(ρ−1;R3) and moreover,

∇q2 = ∇((1− χ)E̊−q−) = (1− χ)∇E̊−q− − E̊−q−∇χ. (A.25)

Since ∇χ is zero outside B2r and χ = 1 inside Br, then ∇χ = 0 in the set complementary to B2r \Br,
and we have for the last term in (A.25), E̊−q−∇χ ∈ H̃0(Ω−)3 ⊂ H̃−1(Ω−)3. On the other hand, the

membership q− ∈M(Ω−) implies ∇q− ∈ H−1(Ω−)3 and since (1−χ)∇E̊−q− = E̊−((1−χ)∇q−) = 0

in Br ⊃ ∂Ω, we obtain (1 − χ)∇E̊−q− ∈ H̃−1(Ω−). Thus ∇q2 ∈ H̃−1(Ω−)3 and hence grad E̊−q− ∈
H̃−1(Ω−)3. Since curl grad E̊±q± = 0 we obtain that grad E̊±q± ∈ H̃−1

curl(Ω±)3. In addition, the last
membership of statement (ii) immediately follows as well. �

Let J t be the Bessel potential operator of order t defined by J tu = F−1(ρtû), where û = Fu is the

Fourier transform and ρ(ξ) = (1+ |ξ|2)
1
2 as defined in Section 2.2. By definition of the Bessel-potential

spaces (see, e.g., [46, Section 3]),

‖g‖Ht(R3) = ‖ρtĝ‖L2(R3), ‖ρtg‖L2(R3) = ‖ĝ‖Ht(R3), ∀ t ∈ R. (A.26)

Lemma A.7. The following Newtonian potential operators for the Brinkman system, α > 0, are linear
and continuous,

Nα;R3 : H−1(R3)3 → H1(R3)3, QR3 : H−1(R3)3 →M(R3), (A.27)

Nα;Ω± : H̃−1(Ω±)3 → H1(Ω±)3, QΩ± : H̃−1(Ω±)3 →M(Ω±), (A.28)

QΩ+ : H̃−1(Ω+)3 → L2(Ω+). (A.29)
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Proof. In view of e.g., [45, Theorem 3.10], [19, Lemma 1.3] the volume potential operator Nα;R3 :
L2(R3)3 → H2(R3)3 is continuous. Since Nα;R3 and its adjoint N ′α;R3 coincide on test functions in

R3, we deduce by duality that the operator Nα;R3 : H−2(R3)3 → L2(R3)3 is continuous as well. Then
by interpolation the operator Nα;R3 : H−1(R3)3 → H1(R3)3 is also continuous. By the continuity
of the Newtonian velocity potential operator (A.27), as well as the continuity of the operators rΩ± :

H1(R3)3 → H1(Ω±)3 and since H̃−1(Ω±)3 is a subspace of H−1(R3)3, we deduce that the Newtonian
potential operators in the left of (A.28) are also continuous.

Let ϕ ∈ H−1(R3)3 and q = QR3ϕ. Due to (A.26), ‖ρ−1q‖L2(R3) = ‖q̂‖H−1(R3).

By (3.10) and (3.2), we have (see, e.g., [45, Equation (3.5)])

q̂(ξ) = Π̂j(ξ)ϕ̂j(ξ) =
−iξ · ϕ̂(ξ)

(2π)
3
2 |ξ|2

. (A.30)

Then, to estimate ‖q̂‖H−1(R3) we have the inequalities

(2π)
3
2 |〈q̂, v̂〉R3 | =

∣∣〈|ξ|−2ξ · ϕ̂, v̂〉L2(R3), L2(R3)

∣∣ ≤ ‖ρ−1ϕ̂‖L2(R3)3 ‖ |ξ|−1ρv̂ ‖L2(R3)

≤ ‖ϕ‖H−1(R3)3

∥∥∥(1 + |ξ|−2)
1
2 v̂
∥∥∥
L2(R3)

≤ ‖ϕ‖H−1(R3)3

∥∥(1 + |ξ|−1)v̂
∥∥
L2(R3)

≤ ‖ϕ‖H−1(R3)3

(
‖v̂‖L2(R3) + 2‖∇v̂‖L2(R3)

)
≤ 2‖ϕ‖H−1(R3)3‖v̂‖H1(R3), (A.31)

that hold for any v̂ ∈ H1(R3) by the Hardy inequality, ‖ |ξ|−1v̂(ξ) ‖L2(R3) ≤ 2‖∇v̂‖L2(R3)3 (see, e.g.,
[44, Inequality (1.3.3)]). This implies

‖ρ−1q‖L2(R3) = ‖q̂‖H−1(R3) ≤
2

(2π)
3
2

‖ϕ‖H−1(R3)3

and hence continuity of the operator QR3 : H−1(R3)3 → L2(ρ−1;R3). Continuity of the operator
gradQR3 : H−1(R3)3 → H−1

curl(R3)3 follows from (A.30). Indeed, we have

‖grad(QR3ϕ)‖H−1(R3)3 = ‖ρ−1F(grad(QR3ϕ))‖L2(R3)3 =
2π

(2π)
3
2

∥∥∥∥ρ−1iξ
ξ

|ξ|2
· ϕ̂
∥∥∥∥
L2(R3)3

≤ 1

(2π)
1
2

‖ρ−1ϕ̂‖L2(R3)3 =
1

(2π)
1
2

‖ϕ‖H−1(R3)3 ,

which shows the desired continuity. This, in turn, implies continuity of the operator in the right of
(A.27) and, by Lemma A.6(i), also continuity of the operator in the right of (A.28) along with the
well-known continuity of operator (A.29). �

If (u±, π±, f̃±) ∈ H1
div(Ω±)3×M(Ω±)×H̃−1(Ω±)3 is such that Lα(u±, π±) = f̃±|Ω± , the conormal

derivatives t±α (u±, π±; f̃±) are still well defined by (2.21), e.g., due to Remark 2.6. The first Green
identity (2.22) also holds true by arguments similar to the ones in the proof of Lemma 2.9 and by the
formula

〈π±,div w±〉Ω± := 〈E̊±π±,div W±〉R3 = −〈grad(E̊±π±),W±〉R3 = −〈grad(E̊±π±),w±〉Ω± ,

where W± ∈ H1(R3)3 is such that rΩ±W± = w±. Note that grad(E̊±π±) ∈ H̃−1(Ω±) by the

definition of the space M(Ω±) and by Lemma A.6. Moreover, if f̃±|Ω± = Lα(u±, π±) ∈ L2(Ω±)3, then

we can take f̃± = E̊Ω±Lα(u±, π±) ∈ H̃0(Ω±)3 ⊂ L2(R3)3 in the definition of conormal derivative
(2.21), which makes it canonical, t±α (u, π), cf., e.g., [18], [51], [52]. In this case the identities (2.22)
take the form

±
〈
t±α (u±, π±), γ±w±

〉
∂Ω

= 2〈E(u±),E(w±)〉Ω± + α〈u±,w±〉Ω±
− 〈π±,div w±〉Ω± + 〈Lα(u±, π±),w±〉Ω± , ∀w± ∈ H1(Ω±)3. (A.32)
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Let now (u±, π±), (w±, q±) ∈ H1
div(Ω±)3×M(Ω±) be such that Lα(u±, π±),Lα(w±, q±) ∈ L2(Ω±)3.

Then subtracting from (A.32) its counterpart with swapped roles of (u±, π±) and (w±, q±), we arrive
at the second Green identity for the Brinkman system,

±
〈
t±α (u±, π±), γ±w±

〉
∂Ω
∓
〈
t±α (w±, q±), γ±u±

〉
∂Ω

=〈Lα(u±, π±),w±〉Ω±−〈Lα(w±, q±),u±〉Ω± . (A.33)

If, in addition, γ+w+ = γ−w−=: γw and t+
α (w+, q+) = t−α (w−, q−)=: tα(w, q), then summing up

equalities (A.33) with upper and lower signs, the second Green identity reduces to

〈[tα(u, π)], γw〉∂Ω − 〈tα(w, q), [γu]〉∂Ω = 〈Lα(u, π),w〉Ω+∪Ω− − 〈Lα(w, q),u〉Ω+∪Ω− , (A.34)

where u,w ∈ H1(R3\∂Ω)3 are defined by u|Ω± := u± and w|Ω± := w±, and [γu] := γ+(u+)−γ−(u−),
[tα(u, π)] := t+

α (u+, π+)−t−α (u−, π−). For any fixed point y ∈ R3 \∂Ω and any index j ∈ {1, 2, 3}, the
fundamental solution (Gαj.(·−y), Πα

j (·−y)), given by (3.2), satisfies all the above conditions imposed

to the couple (w, q) in Ω+∪Ω− \Bε(y), where Bε(y) is a small ball centered at the point y. Modifying
(A.34) to the domains without Bε(y), substituting there (Gαj.(· − y), Πα

j (· − y)) for (w, q) and taking
appropriate limits as ε→ 0, we arrive at the following third Green identity (representation formula),

u = Vα;∂Ω [tα(u, p)]−Wα;∂Ω [γu] + Nα;Ω+∪Ω−Lα(u, p) in R3 \ ∂Ω, (A.35)

for any (u, π) ∈ H1
div(Ω±)3 ×M(Ω±) such that Lα(u±, π±) ∈ L2(Ω±)3.

Let us give the main properties of layer potentials for the Brinkman system, which are also partly
available in [34, Lemma 3.1] for interior and in [12, Proposition 2.3] for exterior Lipschitz domains.

Lemma A.8. Let Ω := Ω+ ⊂ R3 be a bounded Lipschitz domain with connected boundary ∂Ω. Let
α > 0 be a given constant.

(i) Then the following operators are linear and bounded,

(Vα;∂Ω) |Ω+
: H−

1
2 (∂Ω)3 → H1(Ω+)3,

(
Qsα;∂Ω

)
|Ω+

: H−
1
2 (∂Ω)3→ L2(Ω+), (A.36)

(Wα;∂Ω) |Ω+
: H

1
2 (∂Ω)3 → H1(Ω+)3,

(
Qdα;∂Ω

)
|Ω+

:H
1
2 (∂Ω)3 → L2(Ω+). (A.37)

(ii) Let Ω− := R3 \ Ω. Then the following operators are linear and bounded,

(Vα;∂Ω) |Ω− :H−
1
2 (∂Ω)3→ H1(Ω−)3,

(
Qsα;∂Ω

)
|Ω− : H−

1
2 (∂Ω)3 → L2(Ω−), (A.38)

(Wα;∂Ω) |Ω− :H
1
2 (∂Ω)3→H1(Ω−)3,

(
Qdα;∂Ω

)
|Ω− : H

1
2 (∂Ω)3 →M(Ω−). (A.39)

(iii) Let h ∈ H 1
2 (∂Ω)3 and g ∈ H− 1

2 (∂Ω)3. Then the following relations hold a.e. on ∂Ω,

γ+

(
Vα;∂Ωg

)
= γ−

(
Vα;∂Ωg

)
=: Vα;∂Ωg, (A.40)

1

2
h + γ+(Wα;∂Ωh) = −1

2
h + γ−(Wα;∂Ωh) =: Kα;∂Ωh, (A.41)

− 1

2
g + t+

α

(
Vα;∂Ωg,Qsα;∂Ωg

)
=

1

2
g + t−α

(
Vα;∂Ωg,Qsα;∂Ωg

)
=: K∗α;∂Ωg, (A.42)

t+
α

(
Wα;∂Ωh,Qdα;∂Ωh

)
= t−α

(
Wα;∂Ωh,Qdα;∂Ωh

)
=: Dα;∂Ωh, (A.43)

where K∗α;∂Ω is the transpose of Kα;∂Ω, and the following operators are linear and bounded,

Vα;∂Ω : H−
1
2 (∂Ω)3 → H

1
2 (∂Ω)3, Kα;∂Ω : H

1
2 (∂Ω)3 → H

1
2 (∂Ω)3, (A.44)

K∗α;∂Ω : H−
1
2 (∂Ω)3 → H−

1
2 (∂Ω)3, Dα;∂Ω : H

1
2 (∂Ω)3 → H−

1
2 (∂Ω)3. (A.45)

Proof. Let γ : H1(R3)3 → H
1
2 (∂Ω)3 and γ′ : H−

1
2 (∂Ω)3 → H−1(R3)3 be, respectively, the trace

operator and its transpose operator. Both operators are continuous. The volume potential operator
Nα;R3 : H−1(R3)3 → H1(R3)3 is also continuous (see (A.27)). Then, similar to the argument in the
proof of Lemma A.4, the single-layer operator can be represented as Vα;∂Ω = Nα;R3γ′ and hence

Vα;∂Ω : H−
1
2 (∂Ω)3 → H1(R3)3, (Vα;∂Ω) |Ω± : H−

1
2 (∂Ω)3 → H1(Ω±)3, (A.46)
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are continuous operators (see [12, Corollary 2.5] for a different argument). This property shows the
continuity of the first operators in (A.36) and (A.38), as well as continuity of traces (A.40). Continuity

of the second operators in (A.36) and (A.38), Qsα;∂Ω : H−
1
2 (∂Ω)3 → L2(Ω±), follows from the equality

of the single layer pressure potentials for the Brinkman and Stokes systems, Qsα;∂Ω = Qs∂Ω, see (3.13),

and continuity of the second operators in (A.10), (A.12). The jump property (A.42) follows by a
straightforward adaptation of the corresponding arguments of [18, Lemma 4.1].

Next we show the continuity of second operators in (A.37) and (A.39). First we use formula (3.5)
and the second formula in (3.8), and deduce that the fundamental pressure tensor for the Brinkman

system, Λα, can be written as Λαjk(x,y) = Λjk(x,y) +
α

4π|x− y|
δjk. Therefore, the Brinkman double

layer pressure potential is given by

Qdα;∂Ωh = Qd∂Ωh− αV4(h · ν) in R3 \ ∂Ω, ∀ h ∈ H 1
2 (∂Ω)3, (A.47)

where V4 is the Laplace single-layer potential (A.22). Since h · ν ∈ L2(∂Ω), the continuity of the

operator V4 : L2(∂Ω) ⊂ H−
1
2 (∂Ω) → H1(Ω−) ⊂ M(Ω−) and continuity of the second operator in

(A.13) along with the inclusion L2(Ω−) ⊂M(Ω−) imply continuity of the second operator in (A.39).
The continuity of the second operator in (A.37) follows with a similar argument.

Let us show continuity of the first operators in (A.37) and (A.39), by using arguments similar

to those in the proof of [18, Theorem 1]. For a function h ∈ H
1
2 (∂Ω)3 let us consider the couple

(uh, ph) =
(
W∂Ωh,Qd∂Ωh

)
given by the Stokes double layer velocity and pressure potentials. Due to

statement (i) of Lemma A.4, (uh, ph) ∈ H1(Ω±)3 × L2(Ω±) ⊂ H1(Ω±)3 ×M(Ω±) and, moreover,
Lα(uh, ph) = L0(uh, ph) − αuh = −αuh ∈ H1(Ω±)3 ⊂ L2(Ω±), where Lα is given by (1.1). Then
(uh, ph) satisfy the representation formula (the third Green identity) (A.35). Due to (A.16) and (A.18),
we have [γuh] = −h, and moreover,

[
tα(W∂Ωh,Qd∂Ωh)

]
= 0. Then the Brinkman double layer velocity

potential can be also written as

Wα;∂Ωh = W∂Ωh + αNα;R3W∂Ωh in R3 \ ∂Ω, ∀ h ∈ H 1
2 (∂Ω)3. (A.48)

In addition, the last term in (A.47) can be expressed as V4(h · ν) = −QR3W∂Ωh. Indeed, by using
again the property that [γuh] = −h, where uh = W∂Ωh, we obtain

(QR3uh) (x) = −
∫

Ω−∪Ω+

x− y

4π|x− y|3
· uh(y)dy = − 1

4π

∫
Ω−∪Ω+

{
∇y

1

|x− y|

}
· uh(y)dy

= − 1

4π

∫
∂Ω

1

|x− y|
νy · [γuh(y)]dy +

1

4π

∫
Ω−∪Ω+

1

|x− y|
div uh(y)dy

= V4(ν · [γuh])(x) = −V4(h · ν)(x).

Now, the continuity of the operators involved in (A.48) leads to the continuity of the first operators
in (A.37) and (A.39). Jump formulas (A.41) for the double-layer potential Wα;∂Ωh follow from the
formula (A.48), combined with the jump relations (A.16) satisfied by the Stokes double layer poten-
tial W∂Ωh, as well as the continuity of the Brinkman Newtonian potential Nα;R3 across ∂Ω (see

(A.27)). Continuity of the conormal derivatives (A.43) is implied by the equality t±α
(
W∂Ωh,Qd∂Ωh

)
=

t±0
(
W∂Ωh,Qd∂Ωh

)
, relations (A.47) and (A.48), the embedding Nα;R3W∂Ωh ∈ H2

loc(R3)3 and con-
tinuity of the potential V4(h · ν) across ∂Ω. Jump formulas (A.41)-(A.43) can be also obtained by
exploiting arguments similar to those for α = 0 (see, e.g., [57] for further details). �
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[12] C. Băcuţă, M.E. Hassell, G.C. Hsiao, F-J. Sayas, Boundary integral solvers for an evolutionary exterior
Stokes problem, SIAM J. Numer. Anal. 53 (2015), 1370-1392.

[13] O. Chkadua, S. E. Mikhailov, D. Natroshvili, Localized direct segregated boundary-domain integral
equations for variable coefficient transmission problems with interface crack. Mem. Differential Equations
Math. Phys. 52 (2011), 17–64.

[14] O. Chkadua, S. E. Mikhailov, D. Natroshvili, Analysis of segregated boundary-domain integral equations
for variable-coefficient problems with cracks. Numer. Meth. for PDE. 27 (2011), 121–140.

[15] O. Chkadua, S.E. Mikhailov, D. Natroshvili, Localized boundary-domain singular integral equations
based on harmonic parametrix for divergence-form elliptic PDEs with variable matrix coefficients. Integr.
Equ. Oper. Theory. 76 (2013), 509–547.

[16] O. Chkadua, S. E. Mikhailov, D. Natroshvili, Analysis of direct segregated boundary-domain integral
equations for variable-coefficient mixed BVPs in exterior domains. Anal. Appl. 11 (2013), no. 4, 1350006.

[17] H.J. Choe, H. Kim, Dirichlet problem for the stationary Navier-Stokes system on Lipschitz domains,
Commun. Partial Differ. Equ. 36 (2011), 1919-1944.

[18] M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math.
Anal. 19 (1988), 613–626.

[19] P. Deuring, The Resolvent problem for the Stokes system in exterior domains: An elementary approach,
Math. Meth. Appl. Sci. 13 (1990), 335–349.

[20] M. Dindos̆, M. Mitrea, Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains, Publ.
Math. 46 (2002), 353–403.

[21] M. Dindos̆, M. Mitrea, The stationary Navier-Stokes system in nonsmooth manifolds: The Poisson prob-
lem in Lipschitz and C1 domains. Arch. Rational Mech. Anal. 174 (2004), 1–47.

[22] R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods for Science and Technology,
vol. 4: Integral Equations and Numerical Methods. Springer, Berlin-Heidelberg-New York, 1990.

[23] L. Escauriaza, M. Mitrea, Transmission problems and spectral theory for singular integral operators on
Lipschitz domains, J. Funct. Anal. 216 (2004), 141–171.



Stokes and Darcy-Forchheimer-Brinkman PDE systems 27

[24] E. Fabes, C. Kenig, G. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains,
Duke Math. J. 57 (1988), 769–793.

[25] E. Fabes, O. Mendez, M. Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson’s equation for
the Laplacian in Lipschitz domains, J. Funct. Anal. 159 (1998), 323–368.

[26] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I, II,
Springer, Berlin 1998.

[27] V. Girault, A.Sequeira, A well-posed problem for the exterior Stokes equations in two and three dimen-
sions. Arch. Rational Mech. Anal. 114 (1991), 313–333.

[28] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman Advanced Pub. Program, Boston, 1985.

[29] B. Hanouzet, Espaces de Sobolev avec poids – application au problème de Dirichlet dans un demi-espace,
Rend. Sere. Mat. Univ. Padova. 46 (1971), 227–272.

[30] G.C. Hsiao, W.L. Wendland, Boundary Integral Equations: Variational Methods. Springer-Verlag, Hei-
delberg 2008.

[31] A.S. Jackson, I. Rybak, R. Helmig, W.G. Gray, C.T. Miller, Thermodynamically constrained averaging
theory approach for modeling flow and transport phenomena in porous medium systems: 9. Transition
region models. Advances in Water Resources. 42 (2012), 71–90.

[32] D.S. Jerison, C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130
(1995), 161–219.

[33] L.V. Kantorovich, G.P. Akilov, Functional Analysis. Pergamon Press, Oxford, 1982.

[34] M. Kohr, M. Lanza de Cristoforis, W.L. Wendland, Nonlinear Neumann-transmission problems for Stokes
and Brinkman equations on Euclidean Lipschitz domains. Potential Anal. 38 (2013), 1123–1171.

[35] M. Kohr, M. Lanza de Cristoforis, W.L. Wendland, Boundary value problems of Robin type for the
Brinkman and Darcy-Forchheimer-Brinkman systems in Lipschitz domains. J. Math. Fluid Mech. 16
(2014), 595-630.

[36] M. Kohr, M. Lanza de Cristoforis, W.L. Wendland, Nonlinear Darcy-Forchheimer-Brinkman system with
linear Robin boundary conditions in Lipschitz domains. In: Complex Analysis and Potential Theory (T.
Aliev Azeroglu, A.Golberg, S.Rogosin eds.), 111–124, Cambridge Scientific Publishers, 2014. ISBN 978-
1-908106-40-7.

[37] M. Kohr, M. Lanza de Cristoforis, W.L. Wendland, Poisson problems for semilinear Brinkman systems
on Lipschitz domains in R3. Z. Angew. Math. Phys. 66 (2015), 833-864.

[38] M. Kohr, M. Lanza de Cristoforis, W.L. Wendland, On the Robin-transmission boundary value problems
for the nonlinear Darcy-Forchheimer-Brinkman and Navier-Stokes systems. J. Math. Fluid Mech. J.
Math. Fluid Mech. 18 (2016), 293–329.

[39] M. Kohr, S.E. Mikhailov, Dirichlet-transmission problems for the Navier-Stokes and Darcy-Forchheimer-
Brinkman systems in Lipschitz domains with interior cuts. In preparation.

[40] M. Kohr, C. Pintea, W.L. Wendland, Layer potential analysis for pseudodifferential matrix operators
in Lipschitz domains on compact Riemannian manifolds: Applications to pseudodifferential Brinkman
operators. Int. Math. Res. Notices. No. 19 (2013), 4499–4588.

[41] M. Kohr, I. Pop, Viscous Incompressible Flow for Low Reynolds Numbers. WIT Press, Southampton
(UK), 2004.

[42] J. Lang, O. Méndez, Potential techniques and regularity of boundary value problems in exterior non-
smooth domains: regularity in exterior domains. Potential Anal. 24 (2006), 385–406.
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