86,206 research outputs found

    Bottom-up and top-down tree transformations - a comparison

    Get PDF
    The top-down and bottom-up tree transducer are incomparable with respect to their transformation power. The difference between them is mainly caused by the different order in which they use the facilities of copying and nondeterminism. One can however define certain simple tree transformations, independent of the top-down/bottom-up distinction, such that each tree transformation, top-down or bottom-up, can be decomposed into a number of these simple transformations. This decomposition result is used to give simple proofs of composition results concerning bottom-up tree transformations.\ud \ud A new tree transformation model is introduced which generalizes both the top-down and the bottom-up tree transducer

    Top-down tree transducers with regular look-ahead

    Get PDF
    Top-down tree transducers with regular look-ahead are introduced. It is shown how these can be decomposed and composed, and how this leads to closure properties of surface sets and tree transformation languages. Particular attention is paid to deterministic tree transducers

    Towards Practical Typechecking for Macro Tree Transducers

    Get PDF
    Macro tree transducers (mtt) are an important model that both covers many useful XML transformations and allows decidable exact typechecking. This paper reports our first step toward an implementation of mtt typechecker that has a practical efficiency. Our approach is to represent an input type obtained from a backward inference as an alternating tree automaton, in a style similar to Tozawa's XSLT0 typechecking. In this approach, typechecking reduces to checking emptiness of an alternating tree automaton. We propose several optimizations (Cartesian factorization, state partitioning) on the backward inference process in order to produce much smaller alternating tree automata than the naive algorithm, and we present our efficient algorithm for checking emptiness of alternating tree automata, where we exploit the explicit representation of alternation for local optimizations. Our preliminary experiments confirm that our algorithm has a practical performance that can typecheck simple transformations with respect to the full XHTML in a reasonable time

    Evaluating the performance of model transformation styles in Maude

    Get PDF
    Rule-based programming has been shown to be very successful in many application areas. Two prominent examples are the specification of model transformations in model driven development approaches and the definition of structured operational semantics of formal languages. General rewriting frameworks such as Maude are flexible enough to allow the programmer to adopt and mix various rule styles. The choice between styles can be biased by the programmer’s background. For instance, experts in visual formalisms might prefer graph-rewriting styles, while experts in semantics might prefer structurally inductive rules. This paper evaluates the performance of different rule styles on a significant benchmark taken from the literature on model transformation. Depending on the actual transformation being carried out, our results show that different rule styles can offer drastically different performances. We point out the situations from which each rule style benefits to offer a valuable set of hints for choosing one style over the other
    corecore