27 research outputs found

    Bottom-Up and Top-Down Reasoning with Hierarchical Rectified Gaussians

    Full text link
    Convolutional neural nets (CNNs) have demonstrated remarkable performance in recent history. Such approaches tend to work in a unidirectional bottom-up feed-forward fashion. However, practical experience and biological evidence tells us that feedback plays a crucial role, particularly for detailed spatial understanding tasks. This work explores bidirectional architectures that also reason with top-down feedback: neural units are influenced by both lower and higher-level units. We do so by treating units as rectified latent variables in a quadratic energy function, which can be seen as a hierarchical Rectified Gaussian model (RGs). We show that RGs can be optimized with a quadratic program (QP), that can in turn be optimized with a recurrent neural network (with rectified linear units). This allows RGs to be trained with GPU-optimized gradient descent. From a theoretical perspective, RGs help establish a connection between CNNs and hierarchical probabilistic models. From a practical perspective, RGs are well suited for detailed spatial tasks that can benefit from top-down reasoning. We illustrate them on the challenging task of keypoint localization under occlusions, where local bottom-up evidence may be misleading. We demonstrate state-of-the-art results on challenging benchmarks.Comment: To appear in CVPR 201

    Mass Displacement Networks

    Full text link
    Despite the large improvements in performance attained by using deep learning in computer vision, one can often further improve results with some additional post-processing that exploits the geometric nature of the underlying task. This commonly involves displacing the posterior distribution of a CNN in a way that makes it more appropriate for the task at hand, e.g. better aligned with local image features, or more compact. In this work we integrate this geometric post-processing within a deep architecture, introducing a differentiable and probabilistically sound counterpart to the common geometric voting technique used for evidence accumulation in vision. We refer to the resulting neural models as Mass Displacement Networks (MDNs), and apply them to human pose estimation in two distinct setups: (a) landmark localization, where we collapse a distribution to a point, allowing for precise localization of body keypoints and (b) communication across body parts, where we transfer evidence from one part to the other, allowing for a globally consistent pose estimate. We evaluate on large-scale pose estimation benchmarks, such as MPII Human Pose and COCO datasets, and report systematic improvements when compared to strong baselines.Comment: 12 pages, 4 figure

    Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation

    Full text link
    For human pose estimation in monocular images, joint occlusions and overlapping upon human bodies often result in deviated pose predictions. Under these circumstances, biologically implausible pose predictions may be produced. In contrast, human vision is able to predict poses by exploiting geometric constraints of joint inter-connectivity. To address the problem by incorporating priors about the structure of human bodies, we propose a novel structure-aware convolutional network to implicitly take such priors into account during training of the deep network. Explicit learning of such constraints is typically challenging. Instead, we design discriminators to distinguish the real poses from the fake ones (such as biologically implausible ones). If the pose generator (G) generates results that the discriminator fails to distinguish from real ones, the network successfully learns the priors.Comment: Fixed typos. 14 pages. Demonstration videos are http://v.qq.com/x/page/c039862eira.html, http://v.qq.com/x/page/f0398zcvkl5.html, http://v.qq.com/x/page/w0398ei9m1r.htm

    PoseTrack: A Benchmark for Human Pose Estimation and Tracking

    Full text link
    Human poses and motions are important cues for analysis of videos with people and there is strong evidence that representations based on body pose are highly effective for a variety of tasks such as activity recognition, content retrieval and social signal processing. In this work, we aim to further advance the state of the art by establishing "PoseTrack", a new large-scale benchmark for video-based human pose estimation and articulated tracking, and bringing together the community of researchers working on visual human analysis. The benchmark encompasses three competition tracks focusing on i) single-frame multi-person pose estimation, ii) multi-person pose estimation in videos, and iii) multi-person articulated tracking. To facilitate the benchmark and challenge we collect, annotate and release a new %large-scale benchmark dataset that features videos with multiple people labeled with person tracks and articulated pose. A centralized evaluation server is provided to allow participants to evaluate on a held-out test set. We envision that the proposed benchmark will stimulate productive research both by providing a large and representative training dataset as well as providing a platform to objectively evaluate and compare the proposed methods. The benchmark is freely accessible at https://posetrack.net.Comment: www.posetrack.ne

    Anchor Loss: Modulating Loss Scale Based on Prediction Difficulty

    Get PDF
    We propose a novel loss function that dynamically re-scales the cross entropy based on prediction difficulty regarding a sample. Deep neural network architectures in image classification tasks struggle to disambiguate visually similar objects. Likewise, in human pose estimation symmetric body parts often confuse the network with assigning indiscriminative scores to them. This is due to the output prediction, in which only the highest confidence label is selected without taking into consideration a measure of uncertainty. In this work, we define the prediction difficulty as a relative property coming from the confidence score gap between positive and negative labels. More precisely, the proposed loss function penalizes the network to avoid the score of a false prediction being significant. To demonstrate the efficacy of our loss function, we evaluate it on two different domains: image classification and human pose estimation. We find improvements in both applications by achieving higher accuracy compared to the baseline methods

    Multi-Context Attention for Human Pose Estimation

    Full text link
    In this paper, we propose to incorporate convolutional neural networks with a multi-context attention mechanism into an end-to-end framework for human pose estimation. We adopt stacked hourglass networks to generate attention maps from features at multiple resolutions with various semantics. The Conditional Random Field (CRF) is utilized to model the correlations among neighboring regions in the attention map. We further combine the holistic attention model, which focuses on the global consistency of the full human body, and the body part attention model, which focuses on the detailed description for different body parts. Hence our model has the ability to focus on different granularity from local salient regions to global semantic-consistent spaces. Additionally, we design novel Hourglass Residual Units (HRUs) to increase the receptive field of the network. These units are extensions of residual units with a side branch incorporating filters with larger receptive fields, hence features with various scales are learned and combined within the HRUs. The effectiveness of the proposed multi-context attention mechanism and the hourglass residual units is evaluated on two widely used human pose estimation benchmarks. Our approach outperforms all existing methods on both benchmarks over all the body parts.Comment: The first two authors contribute equally to this wor
    corecore