706 research outputs found

    The descriptive theory of represented spaces

    Full text link
    This is a survey on the ongoing development of a descriptive theory of represented spaces, which is intended as an extension of both classical and effective descriptive set theory to deal with both sets and functions between represented spaces. Most material is from work-in-progress, and thus there may be a stronger focus on projects involving the author than an objective survey would merit.Comment: survey of work-in-progres

    Total Representations

    Full text link
    Almost all representations considered in computable analysis are partial. We provide arguments in favor of total representations (by elements of the Baire space). Total representations make the well known analogy between numberings and representations closer, unify some terminology, simplify some technical details, suggest interesting open questions and new invariants of topological spaces relevant to computable analysis.Comment: 30 page

    Effective Choice and Boundedness Principles in Computable Analysis

    Full text link
    In this paper we study a new approach to classify mathematical theorems according to their computational content. Basically, we are asking the question which theorems can be continuously or computably transferred into each other? For this purpose theorems are considered via their realizers which are operations with certain input and output data. The technical tool to express continuous or computable relations between such operations is Weihrauch reducibility and the partially ordered degree structure induced by it. We have identified certain choice principles which are cornerstones among Weihrauch degrees and it turns out that certain core theorems in analysis can be classified naturally in this structure. In particular, we study theorems such as the Intermediate Value Theorem, the Baire Category Theorem, the Banach Inverse Mapping Theorem and others. We also explore how existing classifications of the Hahn-Banach Theorem and Weak K"onig's Lemma fit into this picture. We compare the results of our classification with existing classifications in constructive and reverse mathematics and we claim that in a certain sense our classification is finer and sheds some new light on the computational content of the respective theorems. We develop a number of separation techniques based on a new parallelization principle, on certain invariance properties of Weihrauch reducibility, on the Low Basis Theorem of Jockusch and Soare and based on the Baire Category Theorem. Finally, we present a number of metatheorems that allow to derive upper bounds for the classification of the Weihrauch degree of many theorems and we discuss the Brouwer Fixed Point Theorem as an example

    Closed Choice and a Uniform Low Basis Theorem

    Get PDF
    We study closed choice principles for different spaces. Given information about what does not constitute a solution, closed choice determines a solution. We show that with closed choice one can characterize several models of hypercomputation in a uniform framework using Weihrauch reducibility. The classes of functions which are reducible to closed choice of the singleton space, of the natural numbers, of Cantor space and of Baire space correspond to the class of computable functions, of functions computable with finitely many mind changes, of weakly computable functions and of effectively Borel measurable functions, respectively. We also prove that all these classes correspond to classes of non-deterministically computable functions with the respective spaces as advice spaces. Moreover, we prove that closed choice on Euclidean space can be considered as "locally compact choice" and it is obtained as product of closed choice on the natural numbers and on Cantor space. We also prove a Quotient Theorem for compact choice which shows that single-valued functions can be "divided" by compact choice in a certain sense. Another result is the Independent Choice Theorem, which provides a uniform proof that many choice principles are closed under composition. Finally, we also study the related class of low computable functions, which contains the class of weakly computable functions as well as the class of functions computable with finitely many mind changes. As one main result we prove a uniform version of the Low Basis Theorem that states that closed choice on Cantor space (and the Euclidean space) is low computable. We close with some related observations on the Turing jump operation and its initial topology

    First Order Theories of Some Lattices of Open Sets

    Full text link
    We show that the first order theory of the lattice of open sets in some natural topological spaces is mm-equivalent to second order arithmetic. We also show that for many natural computable metric spaces and computable domains the first order theory of the lattice of effectively open sets is undecidable. Moreover, for several important spaces (e.g., Rn\mathbb{R}^n, n≥1n\geq1, and the domain PωP\omega) this theory is mm-equivalent to first order arithmetic
    • …
    corecore