470 research outputs found

    Aspects of Bifurcation Theory for Piecewise-Smooth, Continuous Systems

    Full text link
    Systems that are not smooth can undergo bifurcations that are forbidden in smooth systems. We review some of the phenomena that can occur for piecewise-smooth, continuous maps and flows when a fixed point or an equilibrium collides with a surface on which the system is not smooth. Much of our understanding of these cases relies on a reduction to piecewise linearity near the border-collision. We also review a number of codimension-two bifurcations in which nonlinearity is important.Comment: pdfLaTeX, 9 figure

    Simultaneous Border-Collision and Period-Doubling Bifurcations

    Full text link
    We unfold the codimension-two simultaneous occurrence of a border-collision bifurcation and a period-doubling bifurcation for a general piecewise-smooth, continuous map. We find that, with sufficient non-degeneracy conditions, a locus of period-doubling bifurcations emanates non-tangentially from a locus of border-collision bifurcations. The corresponding period-doubled solution undergoes a border-collision bifurcation along a curve emanating from the codimension-two point and tangent to the period-doubling locus here. In the case that the map is one-dimensional local dynamics are completely classified; in particular, we give conditions that ensure chaos.Comment: 22 pages; 5 figure

    Dynamics of a piecewise smooth map with singularity

    Full text link
    Experiments observing the liquid surface in a vertically oscillating container have indicated that modeling the dynamics of such systems require maps that admit states at infinity. In this paper we investigate the bifurcations in such a map. We show that though such maps in general fall in the category of piecewise smooth maps, the mechanisms of bifurcations are quite different from those in other piecewise smooth maps. We obtain the conditions of occurrence of infinite states, and show that periodic orbits containing such states are superstable. We observe period-adding cascade in this system, and obtain the scaling law of the successive periodic windows.Comment: 10 pages, 6 figures, composed in Latex2

    The Role of Constraints in a Segregation Model: The Symmetric Case

    Get PDF
    In this paper we study the effects of constraints on the dynamics of an adaptive segregation model introduced by Bischi and Merlone (2011). The model is described by a two dimensional piecewise smooth dynamical system in discrete time. It models the dynamics of entry and exit of two populations into a system, whose members have a limited tolerance about the presence of individuals of the other group. The constraints are given by the upper limits for the number of individuals of a population that are allowed to enter the system. They represent possible exogenous controls imposed by an authority in order to regulate the system. Using analytical, geometric and numerical methods, we investigate the border collision bifurcations generated by these constraints assuming that the two groups have similar characteristics and have the same level of tolerance toward the members of the other group. We also discuss the policy implications of the constraints to avoid segregation

    Shrinking Point Bifurcations of Resonance Tongues for Piecewise-Smooth, Continuous Maps

    Full text link
    Resonance tongues are mode-locking regions of parameter space in which stable periodic solutions occur; they commonly occur, for example, near Neimark-Sacker bifurcations. For piecewise-smooth, continuous maps these tongues typically have a distinctive lens-chain (or sausage) shape in two-parameter bifurcation diagrams. We give a symbolic description of a class of "rotational" periodic solutions that display lens-chain structures for a general NN-dimensional map. We then unfold the codimension-two, shrinking point bifurcation, where the tongues have zero width. A number of codimension-one bifurcation curves emanate from shrinking points and we determine those that form tongue boundaries.Comment: 27 pages, 6 figure
    • ā€¦
    corecore