40,808 research outputs found

    A Confidence-Based Approach for Balancing Fairness and Accuracy

    Full text link
    We study three classical machine learning algorithms in the context of algorithmic fairness: adaptive boosting, support vector machines, and logistic regression. Our goal is to maintain the high accuracy of these learning algorithms while reducing the degree to which they discriminate against individuals because of their membership in a protected group. Our first contribution is a method for achieving fairness by shifting the decision boundary for the protected group. The method is based on the theory of margins for boosting. Our method performs comparably to or outperforms previous algorithms in the fairness literature in terms of accuracy and low discrimination, while simultaneously allowing for a fast and transparent quantification of the trade-off between bias and error. Our second contribution addresses the shortcomings of the bias-error trade-off studied in most of the algorithmic fairness literature. We demonstrate that even hopelessly naive modifications of a biased algorithm, which cannot be reasonably said to be fair, can still achieve low bias and high accuracy. To help to distinguish between these naive algorithms and more sensible algorithms we propose a new measure of fairness, called resilience to random bias (RRB). We demonstrate that RRB distinguishes well between our naive and sensible fairness algorithms. RRB together with bias and accuracy provides a more complete picture of the fairness of an algorithm

    Mal-Netminer: Malware Classification Approach based on Social Network Analysis of System Call Graph

    Get PDF
    As the security landscape evolves over time, where thousands of species of malicious codes are seen every day, antivirus vendors strive to detect and classify malware families for efficient and effective responses against malware campaigns. To enrich this effort, and by capitalizing on ideas from the social network analysis domain, we build a tool that can help classify malware families using features driven from the graph structure of their system calls. To achieve that, we first construct a system call graph that consists of system calls found in the execution of the individual malware families. To explore distinguishing features of various malware species, we study social network properties as applied to the call graph, including the degree distribution, degree centrality, average distance, clustering coefficient, network density, and component ratio. We utilize features driven from those properties to build a classifier for malware families. Our experimental results show that influence-based graph metrics such as the degree centrality are effective for classifying malware, whereas the general structural metrics of malware are less effective for classifying malware. Our experiments demonstrate that the proposed system performs well in detecting and classifying malware families within each malware class with accuracy greater than 96%.Comment: Mathematical Problems in Engineering, Vol 201

    Ensembles of Randomized Time Series Shapelets Provide Improved Accuracy while Reducing Computational Costs

    Full text link
    Shapelets are discriminative time series subsequences that allow generation of interpretable classification models, which provide faster and generally better classification than the nearest neighbor approach. However, the shapelet discovery process requires the evaluation of all possible subsequences of all time series in the training set, making it extremely computation intensive. Consequently, shapelet discovery for large time series datasets quickly becomes intractable. A number of improvements have been proposed to reduce the training time. These techniques use approximation or discretization and often lead to reduced classification accuracy compared to the exact method. We are proposing the use of ensembles of shapelet-based classifiers obtained using random sampling of the shapelet candidates. Using random sampling reduces the number of evaluated candidates and consequently the required computational cost, while the classification accuracy of the resulting models is also not significantly different than that of the exact algorithm. The combination of randomized classifiers rectifies the inaccuracies of individual models because of the diversity of the solutions. Based on the experiments performed, it is shown that the proposed approach of using an ensemble of inexpensive classifiers provides better classification accuracy compared to the exact method at a significantly lesser computational cost
    corecore