2 research outputs found

    Boosting Guaranteed Performance in Wormhole NoCs with Probabilistic Timing Analysis

    Get PDF
    Wormhole-based NoCs (wNoCs) are widely accepted in high-performance domains as the most appropriate solution to interconnect an increasing number of cores in the chip. However, wNoCs suitability in the context of critical real-time applications has not been demonstrated yet. In this paper, in the context of probabilistic timing analysis (PTA), we propose a PTA-compatible wNoC design that provides tight time-composable contention bounds. The proposed wNoC design builds on PTA ability to reason in probabilistic terms about hardware events impacting execution time (e.g. wNoC contention), discarding those sequences of events occurring with a negligible low probability. This allows our wNoC design to deliver improved guaranteed performance. ur results show that WCET estimates of applications running on top of probabilistic wNoCs are reduced by 40% and 75% on average for 4x4 and 6x6 wNoC setups respectively when compared against deterministic wNoCs.This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Mladen Slijepcevic is funded by the Obra Social Fundación la Caixa under grant Doctorado “la Caixa” - Severo Ochoa. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Boosting Guaranteed Performance in Wormhole NoCs with Probabilistic Timing Analysis

    No full text
    Wormhole-based NoCs (wNoCs) are widely accepted in high-performance domains as the most appropriate solution to interconnect an increasing number of cores in the chip. However, wNoCs suitability in the context of critical real-time applications has not been demonstrated yet. In this paper, in the context of probabilistic timing analysis (PTA), we propose a PTA-compatible wNoC design that provides tight time-composable contention bounds. The proposed wNoC design builds on PTA ability to reason in probabilistic terms about hardware events impacting execution time (e.g. wNoC contention), discarding those sequences of events occurring with a negligible low probability. This allows our wNoC design to deliver improved guaranteed performance. ur results show that WCET estimates of applications running on top of probabilistic wNoCs are reduced by 40% and 75% on average for 4x4 and 6x6 wNoC setups respectively when compared against deterministic wNoCs.This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Mladen Slijepcevic is funded by the Obra Social Fundación la Caixa under grant Doctorado “la Caixa” - Severo Ochoa. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer Reviewe
    corecore