7 research outputs found

    Boosting Deep Open World Recognition by Clustering

    Get PDF
    While convolutional neural networks have brought significant advances in robot vision, their ability is often limited to closed world scenarios, where the number of semantic concepts to be recognized is determined by the available training set. Since it is practically impossible to capture all possible semantic concepts present in the real world in a single training set, we need to break the closed world assumption, equipping our robot with the capability to act in an open world. To provide such ability, a robot vision system should be able to (i) identify whether an instance does not belong to the set of known categories (i.e. open set recognition), and (ii) extend its knowledge to learn new classes over time (i.e. incremental learning). In this work, we show how we can boost the performance of deep open world recognition algorithms by means of a new loss formulation enforcing a global to local clustering of class-specific features. In particular, a first loss term, i.e. global clustering, forces the network to map samples closer to the class centroid they belong to while the second one, local clustering, shapes the representation space in such a way that samples of the same class get closer in the representation space while pushing away neighbours belonging to other classes. Moreover, we propose a strategy to learn class-specific rejection thresholds, instead of heuristically estimating a single global threshold, as in previous works. Experiments on RGB-D Object and Core50 datasets show the effectiveness of our approach.Comment: IROS/RAL 202

    Relaxing the Forget Constraints in Open World Recognition

    Get PDF
    In the last few years deep neural networks has significantly improved the state-of-the-art of robotic vision. However, they are mainly trained to recognize only the categories provided in the training set (closed world assumption), being ill equipped to operate in the real world, where new unknown objects may appear over time. In this work, we investigate the open world recognition (OWR) problem that presents two challenges: (i) learn new concepts over time (incremental learning) and (ii) discern between known and unknown categories (open set recognition). Current state-of-the-art OWR methods address incremental learning by employing a knowledge distillation loss. It forces the model to keep the same predictions across training steps, in order to maintain the acquired knowledge. This behaviour may induce the model in mimicking uncertain predictions, preventing it from reaching an optimal representation on the new classes. To overcome this limitation, we propose the Poly loss that penalizes less the changes in the predictions for uncertain samples, while forcing the same output on confident ones. Moreover, we introduce a forget constraint relaxation strategy that allows the model to obtain a better representation of new classes by randomly zeroing the contribution of some old classes from the distillation loss. Finally, while current methods rely on metric learning to detect unknown samples, we propose a new rejection strategy that sidesteps it and directly uses the model classifier to estimate if a sample is known or not. Experiments on three datasets demonstrate that our method outperforms the state of the art

    On the Challenges of Open World Recognitionunder Shifting Visual Domains

    Get PDF
    Robotic visual systems operating in the wild must act in unconstrained scenarios, under different environmental conditions while facing a variety of semantic concepts, including unknown ones. To this end, recent works tried to empower visual object recognition methods with the capability to i) detect unseen concepts and ii) extended their knowledge over time, as images of new semantic classes arrive. This setting, called Open World Recognition (OWR), has the goal to produce systems capable of breaking the semantic limits present in the initial training set. However, this training set imposes to the system not only its own semantic limits, but also environmental ones, due to its bias toward certain acquisition conditions that do not necessarily reflect the high variability of the real-world. This discrepancy between training and test distribution is called domain-shift. This work investigates whether OWR algorithms are effective under domain-shift, presenting the first benchmark setup for assessing fairly the performances of OWR algorithms, with and without domain-shift. We then use this benchmark to conduct analyses in various scenarios, showing how existing OWR algorithms indeed suffer a severe performance degradation when train and test distributions differ. Our analysis shows that this degradation is only slightly mitigated by coupling OWR with domain generalization techniques, indicating that the mere plug-and-play of existing algorithms is not enough to recognize new and unknown categories in unseen domains. Our results clearly point toward open issues and future research directions, that need to be investigated for building robot visual systems able to function reliably under these challenging yet very real conditions. Code available at https://github.com/DarioFontanel/OWR-VisualDomainsComment: RAL/ICRA 202

    OpenGCD: Assisting Open World Recognition with Generalized Category Discovery

    Full text link
    A desirable open world recognition (OWR) system requires performing three tasks: (1) Open set recognition (OSR), i.e., classifying the known (classes seen during training) and rejecting the unknown (unseen//novel classes) online; (2) Grouping and labeling these unknown as novel known classes; (3) Incremental learning (IL), i.e., continual learning these novel classes and retaining the memory of old classes. Ideally, all of these steps should be automated. However, existing methods mostly assume that the second task is completely done manually. To bridge this gap, we propose OpenGCD that combines three key ideas to solve the above problems sequentially: (a) We score the origin of instances (unknown or specifically known) based on the uncertainty of the classifier's prediction; (b) For the first time, we introduce generalized category discovery (GCD) techniques in OWR to assist humans in grouping unlabeled data; (c) For the smooth execution of IL and GCD, we retain an equal number of informative exemplars for each class with diversity as the goal. Moreover, we present a new performance evaluation metric for GCD called harmonic clustering accuracy. Experiments on two standard classification benchmarks and a challenging dataset demonstrate that OpenGCD not only offers excellent compatibility but also substantially outperforms other baselines. Code: https://github.com/Fulin-Gao/OpenGCD

    Boosting Deep Open World Recognition by Clustering

    No full text
    corecore