16,574 research outputs found

    Boosting Deep Open World Recognition by Clustering

    Get PDF
    While convolutional neural networks have brought significant advances in robot vision, their ability is often limited to closed world scenarios, where the number of semantic concepts to be recognized is determined by the available training set. Since it is practically impossible to capture all possible semantic concepts present in the real world in a single training set, we need to break the closed world assumption, equipping our robot with the capability to act in an open world. To provide such ability, a robot vision system should be able to (i) identify whether an instance does not belong to the set of known categories (i.e. open set recognition), and (ii) extend its knowledge to learn new classes over time (i.e. incremental learning). In this work, we show how we can boost the performance of deep open world recognition algorithms by means of a new loss formulation enforcing a global to local clustering of class-specific features. In particular, a first loss term, i.e. global clustering, forces the network to map samples closer to the class centroid they belong to while the second one, local clustering, shapes the representation space in such a way that samples of the same class get closer in the representation space while pushing away neighbours belonging to other classes. Moreover, we propose a strategy to learn class-specific rejection thresholds, instead of heuristically estimating a single global threshold, as in previous works. Experiments on RGB-D Object and Core50 datasets show the effectiveness of our approach.Comment: IROS/RAL 202

    Deep learning for supervised classification

    Get PDF
    One of the most recent area in the Machine Learning research is Deep Learning. Deep Learning algorithms have been applied successfully to computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics. The key idea of Deep Learning is to combine the best techniques from Machine Learning to build powerful general‑purpose learning algorithms. It is a mistake to identify Deep Neural Networks with Deep Learning Algorithms. Other approaches are possible, and in this paper we illustrate a generalization of Stacking which has very competitive performances. In particular, we show an application of this approach to a real classification problem, where a three-stages Stacking has proved to be very effective
    • …
    corecore