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Boosting Deep Open World Recognition
by Clustering

Dario Fontanel*!, Fabio Cermelli*'%2, Massimiliano Mancini®,

3

Samuel Rota Buld?, Elisa Ricci® and Barbara Caputo!?

Abstract—While convolutional neural networks have brought
significant advances in robot vision, their ability is often limited to
closed world scenarios, where the number of semantic concepts to
be recognized is determined by the available training set. Since it
is practically impossible to capture all possible semantic concepts
present in the real world in a single training set, we need to
break the closed world assumption, equipping our robot with
the capability to act in an open world. To provide such ability,
a robot vision system should be able to (i) identify whether an
instance does not belong to the set of known categories (i.e. open
set recognition), and (ii) extend its knowledge to learn new classes
over time (i.e. incremental learning). In this work, we show how
we can boost the performance of deep open world recognition
algorithms by means of a new loss formulation enforcing a
global to local clustering of class-specific features. In particular,
a first loss term, i.e. global clustering, forces the network to map
samples closer to the class centroid they belong to while the
second one, local clustering, shapes the representation space in
such a way that samples of the same class get closer in the
representation space while pushing away neighbours belonging
to other classes. Moreover, we propose a strategy to learn class-
specific rejection thresholds, instead of heuristically estimating
a single global threshold, as in previous works. Experiments on
three benchmarks show the effectiveness of our approach.

Index Terms—Deep Learning for Visual Perception, Visual
Learning, Recognition

I. INTRODUCTION

long-standing goal of artificial intelligence and robotics

is implementing agents able to interact in the real world.
In order to achieve this goal, a crucial step is making the
agent able to understand the current state of the surrounding
environment. Within this context, visual cameras are one of
the most powerful and information-rich sensors, thus a lot of
research efforts have been spent on improving robot vision
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Fig. 1: In the open world scenario a robot must be able to
classify correctly known objects, (apple and mug), and detect
novel semantic concepts (e.g. banana). When a novel concept
is detected, it should learn the new class from an auxiliary
dataset, updating its internal knowledge.

systems. Due to their effectiveness in addressing visual prob-
lems, deep neural networks have been used in many robotic
tasks such as egomotion estimation [1]], depth prediction [2],
[3]], object grasping [4]], [5] and semantic segmentation [6],
[7]. Despite their effectiveness, deep neural networks limit
their understanding to the particular set of knowledge present
in the training set they are tuned on, relying on the closed
world assumption (CWA). Obviously, this is a fundamental
drawback if we want to apply any visual system, especially a
recognition based one, in the real world. Indeed, the world
contains an infinite set of possible input conditions (e.g.
various illumination, environments) and semantic concepts:
capturing them in a single training set is practically unfeasible.
Under these perspectives, we would like to make our algorithm
both robust to unseen input conditions as well as being able
to detect and learn novel semantic concepts. While previous
work tried to address the first problem in the context of domain
adaptation [8]], [9l], [10] and generalization [[L1], little attention
has been posed to the second one. Here we show how we can
break the CWA developing a visual system able to work in
the open world.

To clarify our goal, let us consider the example shown
in Fig. [I] The robot has a knowledge base composed by
a limited number of classes. Given an image containing an
unknown concept (e.g. banana), we want the robot to detect
it as unknown and being able to add it to its knowledge
base in subsequent learning stages. To accomplish this goal,
it is very important for a robot vision system to have two
crucial abilities: (i) it must be able to recognize already seen
concepts and detect unknown ones (i.e. open set recognition),
and (ii) it must be able to extend its knowledge base with
new classes (i.e. incremental learning), without forgetting
the already learned ones and without access to old training



sets, avoiding catastrophic forgetting [12]]). While open set
recognition [13]], [14], [15] and incremental learning [16],
[L7], [[18]], [19] are well-studied problems in the literature, few
works proposed a solution to solve them together [20]], [21],
[22]. Standard approaches for open world recognition (OWR)
equip the nearest class mean (NCM) classification algorithm
with a rejection option based on an estimated threshold. While
standard approaches [20], [21] use shallow features, only
recently it has been showed how deep neural networks can
be successfully employed also in the OWR scenario [22].
In this work we follow the deep learning based approach
of [22] but we take a step forward. In fact, we argue that
it is crucial to force the deep architecture used as feature
extractor to cluster appropriately samples belonging to the
same class, while pushing away samples of other classes.
For this reason, we introduce a global clustering loss term
that aims at keeping closer the features of samples belonging
to the same class to their class centroid. Furthermore, we
show how the soft nearest neighbor loss [23]], [24] can be
successfully employed as a local clustering loss term in order
to force pair of samples of the same class to be closer in the
learned metric space than points of other classes. Additionally,
differently from previous works [20], [22]] we avoid to estimate
a global rejection threshold on the model predictions based on
heuristic rules but we (i) define an independent threshold for
each class and (ii) we explicitly learn the thresholds by using
a margin-based loss function which balances rejection errors
on samples of a reserved memory held-out from the training.
We evaluate the effectiveness of our method on Core50 [25],
RGB-D Object Dataset [26] and CIFAR-100 [27] datasets,
showing that introducing the two complementary clustering
loss and learning the rejection thresholds outperforms previous
approaches.

Contributions. To summarize, the contributions of this paper
are as follows:

o We introduce two clustering losses to effectively localize
samples of the same class in the representation space,
while separating them from points belonging to other
classes;

o We propose an effective method to detect unknown sam-
ples based on learned class-specific rejection thresholds;

+ We demonstrate the superiority of our method over state
of the art, reporting a quantitative analysis and an exten-
sive ablation of the components of our model.

II. RELATED WORKS

The necessity of breaking the CWA for robot vision systems
[28] has lead various research efforts on understanding how
to extend pre-trained models with new semantic concepts
while retain previous knowledge. To this extent, recent years
have seen a growing interest on topics such as continual
[29] and incremental learning [19], [18], [30]. In [31], the
authors study how to update the visual recognition system of a
humanoid robot on multiple training sessions. In [18], a variant
of the Regularized Least Squares algorithm is introduced to
add new classes to a pre-trained model. In [32], a growing
dual-memory is proposed to dynamically learn novel object

instances and categories. In [33]] the authors proposed to learn
an embedding in order to perform fast incremental learning of
new objects. Another solution to this problem can exploit the
help of a human-robot interaction, as in [[19] where a robot
incrementally learns to detect new objects as they are manually
pointed by a human.

While these approaches focus on incremental and continual
learning, acting in the open world requires both detecting un-
known concepts automatically and adding them in subsequent
learning stages. Towards this objective, in [20] the authors
introduced the OWR setting, as a more general and realistic
scenario for agents acting in the real world. In [20], the authors
extend the Nearest Class Mean (NCM) classifier [34], [35]
to act in the open set scenario, proposing the Nearest Non-
Outlier algorithm (NNO). In order to estimate whereas a test
sample belongs to the known or unknown set of categories,
this method introduces a rejection threshold that, after the
first initialization phase, is kept fixed for subsequent learning
episodes. In [21]], the authors proposed to tackle OWR with
the Nearest Ball Classifier, with a rejection threshold based on
the confidence of the predictions. Recently, in [22], the NNO
algorithm of [20]] has been extended by employing an end-
to-end trainable deep architecture as feature extractor, with
a dynamic update strategy for the rejection threshold. In this
work, we show how we can improve the performances of NCM
based classifier for OWR through a global to local clustering
loss. Moreover, differently for previous works, our rejection
threshold is class-specific and is explicitly learned rather than
fixed based on heuristic strategies.

III. OUR METHOD

In this section we describe our OWR method. We start by
formalizing the OWR problem and describing the DeepNNO
framework [22]] which serves as our starting point. We then
discuss our core components, the global to local clustering and
how we learn the class-specific rejection thresholds.

A. Problem Definition

The goal of OWR is producing a model capable of (i)
recognizing known concepts (i.e. classes seen during training),
(ii) detecting unseen categories (i.e. classes not present in any
training set used for training the model) and (iii) incrementally
add new classes as new training data is available. Formally, let
us denote as X and /C the input space (i.e. image space) and
the closed world output space respectively (i.e. set of known
classes). Moreover, since our output space will change as we
receive new data containing novel concepts, we will denote
as K; the set of classes seen after the ¢y, incremental step,
with Ky denoting the category present in the first training
set. Additionally, since we aim to detect if an image contains
an unknown concept, in the following we will denote as
unk the special unknown class, building the output space as
K¢ U {unk}. We assume that, at each incremental step, we
have access to a training set 7; = {(z},¢c}), -, (¢}, ciy,)}.
with Ny = |T¢|, 2t € X, and ¢! € C;, where C; is the set of
categories contained in the training set 7;. Note that, without
loss of generality, in each incremental step, we assume to see



a new set of classes C; NC; = () if ¢ # j. The set of known
classes at step ¢ is computed as K; = U!_,C; and given a
sequence of S incremental steps, our goal is to learn a model
mapping input images to either their corresponding label in g
or to the special class unk. In the following we will split the
classification model into two components: a feature extractor
f that maps the samples into a feature space and a classifier
g that maps the features into a class label, i.e. g(f(z)) = ¢
with ¢ € {Kg,unk}.

B. Preliminaries

Standard approaches to tackle the OWR problem apply non-
parametric classification algorithms on top of learned metric
spaces [20], [21]. A common choice for the classifier g is
the Nearest Class Mean (NCM) [34], [35]. NCM works by
computing a centroid for each class (i.e. the mean feature
vector) and assigning a test sample to the closest centroid in
the learned metric space. Formally, we have:

"M (z) = argmin d(f(x), pie) (1)

ceCy
where d(-,-) is a distance function (e.g. Euclidean) and
is the mean feature vector for class c. The standard NCM
formulation cannot be applied in the OWR setting since it
lacks the inherent capability of detecting images belonging to
unknown categories. To this extent, in [20] the authors extend
the NCM algorithm to the OWR setting by defining a rejection
criterion for the unknowns. In this extension, called Nearest
Non-Outlier (NNO), class scores are defined as:
A (@), ) o
T

where 7 is the rejection threshold and Z is a normalization
factor. The final classification is held-out as:

() unk if sM0(z) <0 Ve e Ky,
) =
g gNM(z) otherwise.

Following [34], in [20] the features are linearly projected into
a metric space defined by a matrix W (i.e. f(z) = W-x), with
W learned on the first training set 7o and kept fixed during the
successive learning steps. The main limitation of this approach
is that new knowledge will be incorporated in the classifier g
without updating the feature extractor f accordingly. In [22],
it is shown how the performance of NNO can be significantly
improved by using as f a deep architecture trained end-to-end
in each incremental step. The proposed algorithm, DeepNNO,
trains the deep neural network by minimizing the binary cross-
entropy loss:

Uzisei) = ) Lo, log(s2™ (@) 4 Loge, log(1—52" (1))

ceCy
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where s?™09(z) is the class scores computed as s2™0(z) =
e~ 3lIf@)=pell” Differently from [34], [20], the underlying
feature representation of the data changes along with the
parameters of the backbone architecture. As a consequence, it
is not possible to fix the class-specific centroids, especially in
the incremental learning setting, since changes in the network

parameters will create a shift among the computed old class

M) =

21—

3)

Fig. 2: Overview of the proposed global to local clustering.
The global clustering (left) pushes sample representations
closer to the centroid (star) of the class they belong to.
The local clustering (right), instead, forces the neighborhood
of a sample in the representation space to be semantically
consistent, pushing away samples of other classes.

centroids and the current network activations. Such shift can-
not be recovered, since the training sets 7; with ¢ < ¢ are not
available. To overcome this problem, DeepNNO proposes to
(1) update online the class centroids and (ii) perform rehearsal
using as memory stored samples of old classes. Additionally,
DeepNNO uses the network at the previous learning step
to compute a distillation loss [36], [16] on the network
activations, reducing the catastrophic forgetting problem by
preventing them from deviating from the features used to
discern old classes.

Finally, [22] updates online the rejection threshold during
training with an heuristic rule that raises the threshold when-
ever the network predicts true positives or negatives and lowers
it whenever the network predicts false positives or negatives.
The final classification is held-out as in Eq.(3).

While we will base our architecture and classifier on [22],
we argue that DeepNNO has two main drawbacks. First,
the learned feature representation f is not forced to produce
predictions clearly localized in a limited region of the metric
space. Indeed, constraining the feature representations of a
given class to a limited region of the metric space allows
to have both more confident predictions on seen classes
and producing clearer rejections also for images of unseen
concepts. Second, having an heuristic strategy for setting the
threshold is sub-optimal with no guarantees on the robustness
of the choice. In the following, we will detail how we provide
solutions to both problems.

C. Boosting Deep Open World Recognition

To obtain feature representations clearly localized in the
metric space based on their semantic, we propose to use a
pair of losses enforcing clustering. In particular, we use a
global term which forces the network to map samples of the
same class close to their centroid (Fig[2 left) and a local
clustering term which constrains the neighborhood of a sample
to be semantically consistent, i.e. to contain samples of the
same class (Fig[2] right). In the following we describe the two
clustering terms.



Global Clustering. The global clustering term aims to reduce
the distance between the features of a sample with the centroid
of its class. To model this, we took inspiration from what has
been proposed in [34] and we employ a cross-entropy loss
with the probabilities obtained through the distances among
samples and class centroids. Formally, given a sample x and its
class label ¢, we define the global clustering term as follows:

Se(x
lee(z,c) = —log # &)
D sila)
keks
The class-specific score s.(x) is defined as:
e Tl1f (@) —pell?
se(x (6)

- S e HIF@ -l

keCy

where T is a temperature value which allows us to control
the behavior of the classifier. We set T' as the variance of the
activations in the feature space, o2, in order to normalize the
representation space and increase the stability of the system.
During training, o2 is the variance of the features extracted
from the current batch while, at the same time, we keep an
online global estimate of o that we use at test time. The class
mean vectors y; with i € K, as well as o2 are computed in
an online fashion, as in [22].

Local Clustering. To enforce that the neighborhood of a
sample in the feature space is semantically consistent (i.e.
given a sample x of a class ¢, the nearest neighbours of
f(z) belong to ¢), we employ the soft nearest neighbour loss
[23], [24]]. This loss has been proposed to measure the class-
conditional entanglement of features in the representation
space. In particular, it has been defined as:

S e @ sl
z;EBN\{z}
¢ B) = —log”"
rc(z,c,B) 0g Zef%nf(z)ff(rkﬂf

zpeB\{z}

where T refers to the temperature value, B is the current
training batch, and B, is the set of samples in the training batch
belonging to class c. Instead of performing multiple learning
steps to optimize the value of T as proposed in [24], we use
as T = o2 as we do in Eq. |6

Intuitively, given a sample = of a class ¢, a low value of
the loss indicates that the nearest neighbours of f(x) belong
to ¢, while high values indicates the opposite (i.e. nearest
neighbours belong to classes i € C; with ¢ # ¢). Minimizing
this objective allows to enforce the semantic consistency in
the neighborhood of a sample in the feature space.

(7

Reducing catastrophic forgetting through distillation. As
highlighted in the previous sections, to avoid forgetting old
knowledge, we want the feature extractor to preserve the
behaviour learned in previous learning steps. To this extent,
we follow standard rehearsal-based approaches for incremental
learning [16], [37], [22], [38] and we introduce (i) a memory
which stores the most relevant samples for classes in K;
and (ii) a distillation loss which enforces consistency among
the features extracted by f and ones obtained by the feature
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Fig. 3: Overview of the learning of the class-specific rejection
thresholds. The small circles represent the samples in the held
out set. The dashed circles, having radius the maximal distance
(red), represent the limits beyond which a sample is rejected
as a member of that class. As it can be seen, the class-specific
threshold is learned to reduce the rejection errors. Best viewed
in colors.

extractor of the previous learning step, f;—;. Formally, the
distillation loss is computed as:

tps(x) = ||f(z) = fia (@)l ®)

This loss is minimized only for incremental training steps,
hence, only when ¢ > 1.

Overall, we train the network to minimize on a batch of
samples B = {(x1,c1), -+, (2|5, ¢5)} the following loss:

1
|B]

with A and v hyperparameters weighting the different compo-
nents. We set A = v =1 in all experiments.

L= Z Loo(z,e) + A bpe(x, e, B) +v €ps(x) (9)

(z,c)eB

Learning to detect the unknown. In order to extend our
NCM-based classifier to work on the open set scenario, we
explicitly learn class-specific rejection criterions. As illustrated
in Fig.|3| for each class ¢ we define the class-specific threshold
as the maximal distance A, for which the sample belongs to
c. Under this definition, our classifier is:

ifd(f(z), pe) > A, Ve € Ky,

unk
g9(x) = , .
argmin d(f(x), c) otherwise
(10)
with d(z, y) = ||z —yl|. Instead of heuristically estimating
or fixing a maximal distance, we explicitly learn it for each

class minimizing the following objective:

1
lup(x,e) =) maX(Oam'(§||f($)—ﬂk||2_Ak)) Y
kEK,

where m = —1 if ¢ = k and m = 1 otherwise. The ¢,;p
loss leads to an increase of A, if the distance from a sample
belonging to the class c and the class centroid . is greater
than A.. Instead, if a sample not belonging to ¢ has a distance
from . less then A, it increases the value of A..

Overall, the training procedure of our method is made of
two steps: in the first we train the feature extractor on the
training set minimizing Eq. [0] while in the second we learn
the distances A, on a set of samples which we held-out from
training set. To this extent, we split the samples of the memory



in two parts, one used for updating the feature extractor f and
the centroids . and the other part for learning the A, values.

IV. EXPERIMENTS

In this section, we first introduce the experimental setting
and the metrics used for the evaluation, then we report results
of our experiments and an ablation study of our contributions.

A. Experimental Setting

Datasets and Baselines. We assess the performance of our
model on three datasets: RGB-D Object [26] Core50 [25] and
CIFAR-100 [27]. The RGB-D Object dataset [26] is one of
the most used dataset to evaluate the ability of a model to
recognize daily-life objects. It contains 51 different semantic
categories that we split in two parts in our experiments: 26
classes are considered as known categories, while the other
25 are the set of unknown classes. Among the 26 classes, we
consider the first 11 classes as the initial training set and we
incrementally add the remaining classes in 4 steps of 5 class
each. As proposed in [26], we sub-sample the dataset taking
one every fifth frame. For the experiments, we use the first
train-test split among the original ones defined by the authors
[26]. In each split one object instance from each class is chosen
to be used in the test set and removed from the training set.
This split provides nearly 35,000 training images and 7,000
test images. Core50 [25]] is a recently introduced benchmark
for testing continual learning methods in an egocentric setting.
The dataset contains images of 50 objects grouped into 10
semantic categories. The images have been acquired on 11
different sequences with varying conditions. Following the
standard protocol described in [25], we select the sequences
3, 7, 10 for the evaluation phase and use the remaining ones
to train the model. Due to these differences in conditions
between the sequences, Core50 represents a very challenging
benchmark for object recognition. As in the RGB-D Object
dataset, we split it into two parts: 5 classes are considered
known and the other 5 as unknown. In the known set, the
first 2 classes are considered as the initial training set. The
others are incrementally added 1 class at a time. CIFAR-100
[27] is a standard benchmark for comparing incremental class
learning algorithms [16]. It contains 100 different semantic
categories. We follow previous works [22] splitting the dataset
into 50 known and 50 unknown classes and considering 20
classes as the initial training set. Then, we incrementally add
the remaining ones in steps of 10 classes. We evaluate the
performance of our method in the OWR scenario comparing
it to DeepNNO [22] and NNO [20], using the implementation
in [22] for the latter. We further compare our method with
two standard incremental class learning algorithms, namely
LwF [39] (in the MC variant of [16]) and iCaRL [16]. Both
LwF and iCaRL are designed for the closed world scenario,
thus we use their performances as reference in that setting,
without open-ended evaluation. For each dataset, we have
randomly chosen five different sets of known and unknown
classes. After fixing them, we run the experiments three times
for each method. The results are obtained by averaging the
results among each run and order.

Networks architectures and training protocols. Following
previous works, we use a ResNet-18 architecture [40] for
all the experiments. For RGB-D Object dataset and Core50,
we train the network from scratch on the initial classes for
12 epochs and for 4 epochs in the incremental steps. For
CIFAR-100, instead, we set the epochs to 120 for the initial
learning stage and to 40 for each incremental step. We use
a learning rate of 0.1 and batch size 128 for the RGB-D
Object dataset, while we use 0.01 and 64 for Core50. We
train the network using Stochastic Gradient Descent (SGD)
with momentum 0.9 and a weight decay of 10~ on both
datasets.We resize the images of RGB-D Object dataset to
64 x 64 pixels and the images of Core50 to 128 x 128
pixels. We perform random cropping and mirroring for all the
datasets. Moreover, for the set of held-out samples, we also
perform color jittering varying brightness, hue and saturation.
For the baselines, we use the same network architecture and
training protocol defined in [22]. We also employ the same
strategy for memory management, considering a fixed size of
2000 samples and constructing each batch by drawing 40% of
the instances from memory. Differently from [22], we never
see during training 20% of the samples present in memory,
using them only to learn the values the class-specific threshold
values Ay.

Metrics We use 3 standard metrics for comparing the perfor-
mances of OWR methods. For the closed world we show the
global accuracy with and without rejection option. Specifically,
in the closed world without rejection setting, the model is
tested only on the known set of classes, excluding the possi-
bility to classify a sample as unknown. This scenario measures
the ability of the model to correctly classify samples among
the given set of classes. In the closed world with rejection
scenario, instead, the model can either classify a sample among
the known set of classes or categorize it as unknown. This
scenario is more challenging than the previous one because
samples belonging to the set of known classes might be
misclassified as unknowns. For the open world we use the
standard OWR metric defined in [20] as the average between
the accuracy computed on the closed world with rejection
scenario and the accuracy computed on the open set scenario
(i.e. the accuracy on rejecting samples of unknown classes).
Since the latter metric creates biases on the final score (i.e. a
method rejecting every sample will achieve a 50% accuracy),
we introduced the OWR-H as the harmonic mean between
the accuracy on open set and the closed world with rejection
scenarios to mitigate this bias.

B. Quantitative results

We report the results on the RGB-D Object dataset in Fig.
Considering the closed world without rejection, reported in
Fig. fal we note that our method is able to improve the
feature representation, outperforming DeepNNO by 5.6% of
accuracy on average and NNO by 14.8%. The reason for
the improvement comes from the introduction of the global
and local clustering loss terms, which allows the model to
better aggregate samples of the same class and to better
separate them from samples of other classes. Comparing our
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Fig. 6: Comparison of NNO [20], DeepNNO [22] and our
method on Cifar dataset [27]. The numbers in parenthesis
denote the average accuracy among the different steps.

model with the incremental class learning approaches LwF and
iCaRL, we can see that our approach is highly competitive,
surpassing LwF with a large gap while being comparable with
the more effective iCaRL. We believe these are remarkable
results given that the main goal of our model is not to
purely extend its knowledge over time with new concepts.
The comparison on the closed world with rejection, shown in
Fig. @b] demonstrates that our method is also more confident
on the known classes, being able to reject a lower number of
known samples. In particular, our method is more confident
on the first incremental steps, and obtains, on average, an
accuracy of 10.3% more than DeepNNO. Considering the
open world metrics, our method is superior to previous works.
From the results of OWR, reported in Fig. we see that
our method reaches performance similar to DeepNNO in the
first steps, while it outperforms it in the latest ones. However,
considering the OWR-H (Fig. [d), our method is better in
all the incremental steps. This is because previous methods

are biased towards rejecting more samples, as it is demon-
strated by the lower closed world with rejection performance
they achieve. On the contrary, our learned rejection criterion,
coupled with our clustering losses, allows to achieve a better
trade-off between the accuracy of open set and closed world
with rejection. Overall, our method improves on average by
4.8% and 5.2% with respect to DeepNNO in the OWR and
OWR-H metrics respectively.

In Fig. 5] we report the results on the Core50 [23] dataset.
Similarly to the RGB-D Object dataset, our method achieves
competitive results with respect to incremental class learning
algorithms designed for the closed world scenario, remark-
ably outperforming iCaRL by 4.7% of accuracy in the last
incremental step. It also achieves a superior performance in
both closed world, without and with rejection option with
respect to state-of-the-art OWR algorithms, outperforming
NNO by 13.01% and DeepNNO by 7.74% on average in
the first (Fig. and by more than 10% for both NNO
and DeepNNO in the latter (Fig. [Bb). In particular, it is
worth noting how both DeepNNO and NNO are not able
to properly model the confidence threshold, rejecting most
of the sample of the known classes. Indeed, by including
the rejection option the accuracy drops to 27.2% and 26.3%
respectively for DeepNNO and NNO, while our model reaches
an average accuracy of 38.0%. In Fig. [5¢| and Fig. 5d] we
report the OWR performances (standard and harmonic) on
Core50. Our method outperforms DeepNNO by 3.4% and
7.2% in average respectively in standard OWR and OWR-H
metrics, confirming the effectiveness of our clustering losses
and learned class-specific maximal distances.

Finally, in Fig. [6] we report the results on the CIFAR-100
dataset in terms of the OWR (Fig. [6a) and OWR-H metrics



Method Known Classes OWR

11 16 21 26 [20] H
GC 66.0 | 57.3 58.6 | 53.3 58.8 | 58.7
LC 64.1 | 56.0 579 | 56.4 58.6 | 58.4
Triplet 62.1 | 549 548 | 495 554 | 554
GC + LC 67.7 | 59.6 59.5 | 573 61.0 | 60.8

TABLE I: Ablation study on the global (GC), local clustering
(LC) and Triplet loss on the OWR metric. The right column
shows the average OWR-H over all steps.

Class Multi

Method . Known Unknown | Diff.
specific  stage

DeepNNO [22] 84.4 98.8 14.4

v 83.0 98.6 15.6

Ours v 4.4 26.9 22.6

v v 27.4 65.2 37.8

TABLE II: Rejection rates of different techniques for detecting
the unknowns. The results are computed using the same feature
extractor on the RGB-D Object dataset.

(Fig. [6b). Even in this benchmark, our approach achieves
superior results, on average, than previous methods. Our
model achieves lower performances with respect to NNO and
DeepNNO only in the initial training stage. However, in the
incremental learning steps our model clearly outperforms both
methods, demonstrating its ability to learning and recognizing
in an open-world without forgetting old classes. In fact,
considering the incremental steps, the average improvement
of our model over NNO are of 10% in both OWR and OWR-
H metrics, while over DeepNNO are of 2% for the OWR and
4.5% for the OWR-H metric.

C. Ablation study.

Our approach is mainly built on three components, i.e.
global clustering loss (GC), local clustering loss (LC) and
the learned class-specific rejection thresholds.In this section
we analyze each proposed contribution. We start from the two
clustering losses and then we compare the choice we made
for the rejection with other common choices.

Global and local clustering. In Table [l we compare the two
clustering terms considering the open world recognition met-
rics in the RGB-D Object dataset. By analyzing the two loss
terms separately we see that, on average, they show similar
performance. In particular, using only the global clustering
(GC) term we achieve slightly better performance on the
first three incremental steps, while on the fourth the local
clustering (LC) term is better. However, the best performance
on every step is achieved by combining the global and local
clustering terms (GC + LC). This demonstrates that the two
losses provide different contributions, being complementary to
learn a representation space which properly clusters samples
of the same classes while better detecting unknowns. Finally,
since our loss functions and triplet loss [41] share the same
objective, i.e. building a metric space where samples sharing
the same semantic are closer then ones with different seman-
tics, we report in Table [[] also the results achieved by replacing
our loss terms with a triplet loss [41]]. As the Table shows, the
triplet loss formulation (Triplet) fails in reaching competitive
results with respect to our full objective function, with a gap
of more than 5% in both standard OWR metric and OWR
harmonic mean. Notably, it achieves lower results also with

respect to all of the loss terms in isolation and the superior
performances of LC confirm the advantages of SNNL-based
loss functions with respect to triplets, as shown in [24].

Detecting the Unknowns. In Table [IIj we report a comparison
of different strategies to reject samples on the RGB-D Object
dataset [26]. In particular, using the same feature extractor,
we compare the proposed method to learn the class-specific
maximal distances with three baselines: (i) we adopt the
strategy proposed by DeepNNO [22], (ii) we learn class-
specific maximal distances but during training (i.e. without
our two-stage pipeline) and (iii) we learn a single maximal
distance which applies to all classes using our two-stage
training strategy. The comparison is performed considering
the difference of the rejection rates on the known and un-
known samples. For the known class samples, we report the
percentage of correctly classified samples in the closed-world
that are rejected when the rejection option is included. We
intentionally remove the wrongly classified samples since we
want to isolate rejection mistakes from classification ones. On
the unknown samples, we report the open-set accuracy, i.e. the
percentage of rejected samples among all the unknown ones.
In the third column, we report the difference among the open-
set accuracy and the rejection rate on known samples. Ideally,
the difference should be as close as possible to 100%, since
we want a 100% rejection rate on unknown class samples and
0% on the known class ones. From the table, we see that the
highest gap is achieved by the class-specific maximal distance
with the two-stage pipeline we proposed, which rejects 27.4%
of known class samples and 65.2% on the unknown ones. The
gap with the other strategies is remarkable. Using the two
stage-pipeline but a class-generic maximal distance leads to
a low rejection rate, both on known and unknown samples,
achieving a difference of 22.6%, which is 15.2% less than
using a class-specific distance. On the other hand, estimating
the confidence threshold as proposed in DeepNNO [22] or
without our two-stage pipeline provides a very high rejection
rate, both on known and unknown classes, which lead to a
difference of 14.4% and 15.6% for DeepNNO and the single-
stage strategy respectively, the lowest two among the four
strategies. In fact, computing the thresholds using only the
training set biases the rejection criterion on the overconfidence
that the method has acquired on this set. At test time, this
causes the model to consider the different data distribution
(caused by e.g. different object instances) as a source for
rejection even if the actual concept present in the input is
known. Using the two-stage process allows to overcome this
bias, tuning the rejection criterion on unseen data on which
the model cannot be overconfident.

V. CONCLUSION AND FUTURE WORKS

In this work we presented an approach to tackle the open
world recognition problem in robot vision. As in previous
works, we base our approach on a NCM classifier built on
top of deep features, and we boost the OWR performances of
this framework by training the deep architecture to minimize
a global to local semantic clustering loss. This loss allows to
reduce distances of samples of the same class in the feature



space while separating them from points belonging to other
classes, thus better detecting unknown concepts. Moreover, we
avoid heuristic estimates of a rejection criterion for detecting
unknowns by explicitly learning class-specific distances be-
yond which a sample is rejected. Quantitative and qualitative
analysis on standard recognition benchmarks show the efficacy
of our approach and choices, outperforming previous state-
of-the-art OWR algorithms. While here we considered the
OWR scenario, there are still many directions that could be
explored for enabling robots to learn autonomously in the
real word. One could be extending the approach to the Web-
aided OWR scenario considered in [22]. In particular, when
training images are autonomously retrieved from the Web,
they come with an inherent noisy labelling. In this context
our model will not be able to work well since the noise will
be transmitted to the class-specific cluster center hampering
the efficacy of the recognition model. Moreover, it would be
interesting to analyze the OWR problem in an active learning
context [42]]. Finally, another interesting research direction
would be extending OWR approaches to more complex tasks,
such as object detection and segmentation, where the ability to
distinguish among background/stuffs [43] and actual unknown
objects and the background shift problem illustrated in [44].
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