2,472 research outputs found

    Boosting the Transferability of Adversarial Attacks with Global Momentum Initialization

    Full text link
    Deep neural networks are vulnerable to adversarial examples, which attach human invisible perturbations to benign inputs. Simultaneously, adversarial examples exhibit transferability under different models, which makes practical black-box attacks feasible. However, existing methods are still incapable of achieving desired transfer attack performance. In this work, from the perspective of gradient optimization and consistency, we analyze and discover the gradient elimination phenomenon as well as the local momentum optimum dilemma. To tackle these issues, we propose Global Momentum Initialization (GI) to suppress gradient elimination and help search for the global optimum. Specifically, we perform gradient pre-convergence before the attack and carry out a global search during the pre-convergence stage. Our method can be easily combined with almost all existing transfer methods, and we improve the success rate of transfer attacks significantly by an average of 6.4% under various advanced defense mechanisms compared to state-of-the-art methods. Eventually, we achieve an attack success rate of 95.4%, fully illustrating the insecurity of existing defense mechanisms

    The Effects of JPEG and JPEG2000 Compression on Attacks using Adversarial Examples

    Full text link
    Adversarial examples are known to have a negative effect on the performance of classifiers which have otherwise good performance on undisturbed images. These examples are generated by adding non-random noise to the testing samples in order to make classifier misclassify the given data. Adversarial attacks use these intentionally generated examples and they pose a security risk to the machine learning based systems. To be immune to such attacks, it is desirable to have a pre-processing mechanism which removes these effects causing misclassification while keeping the content of the image. JPEG and JPEG2000 are well-known image compression techniques which suppress the high-frequency content taking the human visual system into account. JPEG has been also shown to be an effective method for reducing adversarial noise. In this paper, we propose applying JPEG2000 compression as an alternative and systematically compare the classification performance of adversarial images compressed using JPEG and JPEG2000 at different target PSNR values and maximum compression levels. Our experiments show that JPEG2000 is more effective in reducing adversarial noise as it allows higher compression rates with less distortion and it does not introduce blocking artifacts

    Attack Type Agnostic Perceptual Enhancement of Adversarial Images

    Full text link
    Adversarial images are samples that are intentionally modified to deceive machine learning systems. They are widely used in applications such as CAPTHAs to help distinguish legitimate human users from bots. However, the noise introduced during the adversarial image generation process degrades the perceptual quality and introduces artificial colours; making it also difficult for humans to classify images and recognise objects. In this letter, we propose a method to enhance the perceptual quality of these adversarial images. The proposed method is attack type agnostic and could be used in association with the existing attacks in the literature. Our experiments show that the generated adversarial images have lower Euclidean distance values while maintaining the same adversarial attack performance. Distances are reduced by 5.88% to 41.27% with an average reduction of 22% over the different attack and network types
    • …
    corecore