9 research outputs found

    Graph-based classification of multiple observation sets

    Get PDF
    We consider the problem of classification of an object given multiple observations that possibly include different transformations. The possible transformations of the object generally span a low-dimensional manifold in the original signal space. We propose to take advantage of this manifold structure for the effective classification of the object represented by the observation set. In particular, we design a low complexity solution that is able to exploit the properties of the data manifolds with a graph-based algorithm. Hence, we formulate the computation of the unknown label matrix as a smoothing process on the manifold under the constraint that all observations represent an object of one single class. It results into a discrete optimization problem, which can be solved by an efficient and low complexity algorithm. We demonstrate the performance of the proposed graph-based algorithm in the classification of sets of multiple images. Moreover, we show its high potential in video-based face recognition, where it outperforms state-of-the-art solutions that fall short of exploiting the manifold structure of the face image data sets.Comment: New content adde

    Achieving illumination invariance using image filters

    Get PDF
    In this chapter we described a novel framework for automatic face recognition in the presence of varying illumination, primarily applicable to matching face sets or sequences. The framework is based on simple image processing filters that compete with unprocessed greyscale input to yield a single matching score between individuals. By performing all numerically consuming computation offline, our method both (i) retains the matching efficiency of simple image filters, but (ii) with a greatly increased robustness, as all online processing is performed in closed-form. Evaluated on a large, real-world data corpus, the proposed framework was shown to be successful in video-based recognition across a wide range of illumination, pose and face motion pattern change

    GhostVLAD for set-based face recognition

    Full text link
    The objective of this paper is to learn a compact representation of image sets for template-based face recognition. We make the following contributions: first, we propose a network architecture which aggregates and embeds the face descriptors produced by deep convolutional neural networks into a compact fixed-length representation. This compact representation requires minimal memory storage and enables efficient similarity computation. Second, we propose a novel GhostVLAD layer that includes {\em ghost clusters}, that do not contribute to the aggregation. We show that a quality weighting on the input faces emerges automatically such that informative images contribute more than those with low quality, and that the ghost clusters enhance the network's ability to deal with poor quality images. Third, we explore how input feature dimension, number of clusters and different training techniques affect the recognition performance. Given this analysis, we train a network that far exceeds the state-of-the-art on the IJB-B face recognition dataset. This is currently one of the most challenging public benchmarks, and we surpass the state-of-the-art on both the identification and verification protocols.Comment: Accepted by ACCV 201

    Boosted manifold principal angles for image set-based recognition

    Full text link
    In this paper we address the problem of classifying vector sets. We motivate and introduce a novel method based on comparisons between corresponding vector subspaces. In particular, there are two main areas of novelty: (i) we extend the concept of principal angles between linear subspaces to manifolds with arbitrary nonlinearities; (ii) it is demonstrated how boosting can be used for application-optimal principal angle fusion. The strengths of the proposed method are empirically demonstrated on the task of automatic face recognition (AFR), in which it is shown to outperform state-of-the-art methods in the literature.</p

    Boosted Manifold Principal Angles for Image Set-Based Recognition

    No full text
    In this paper we address the problem of classifying vector sets. We motivate and introduce a novel method based on comparisons between corresponding vector subspaces. In par-ticular, there are two main areas of novelty: (i) we extend the concept of principal angles between linear subspaces to manifolds with arbitrary nonlinearities; (ii) it is demonstrated how boosting can be used for application-optimal principal angle fusion. The strengths of the proposed method are empirically demonstrated on the task of automatic face recogni-tion (AFR), in which it is shown to outperform state-of-the-art methods in the literature
    corecore