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1. Introduction 

In this chapter we are interested in accurately recognizing human faces in the presence of 
large and unpredictable illumination changes. Our aim is to do this in a setup realistic for 
most practical applications, that is, without overly constraining the conditions in which 
image data is acquired. Specifically, this means that people's motion and head poses are 
largely uncontrolled, the amount of available training data is limited to a single short 
sequence per person, and image quality is low. 
In conditions such as these, invariance to changing lighting is perhaps the most significant 
practical challenge for face recognition algorithms. The illumination setup in which 
recognition is performed is in most cases impractical to control, its physics difficult to 
accurately model and face appearance differences due to changing illumination are often 
larger than those differences between individuals [1]. Additionally, the nature of most real-
world applications is such that prompt, often real-time system response is needed, 
demanding appropriately efficient as well as robust matching algorithms. 
In this chapter we describe a novel framework for rapid recognition under varying 
illumination, based on simple image filtering techniques. The framework is very general and 
we demonstrate that it offers a dramatic performance improvement when used with a wide 
range of filters and different baseline matching algorithms, without sacrificing their 
computational efficiency. 

1.1 Previous work and its limitations 

The choice of representation, that is, the model used to describe a person's face is central to 
the problem of automatic face recognition. Consider the components of a generic face 
recognition system schematically shown in Figure 1. 
A number of approaches in the literature use relatively complex facial and scene models that 
explicitly separate extrinsic and intrinsic variables which affect appearance. In most cases, 
the complexity of these models makes it impossible to compute model parameters as a 
closed-form expression ("Model parameter recovery" in Figure 1). Rather, model fitting is 
performed through an iterative optimization scheme. In the 3D Morphable Model of Blanz 
and Vetter [7], for example, the shape and texture of a novel face are recovered through 
gradient descent by minimizing the discrepancy between the observed and predicted 
appearance. Similarly, in Elastic Bunch Graph Matching [8, 23], gradient descent is used to 

Source: Face Recognition, Book edited by: Kresimir Delac and Mislav Grgic, ISBN 978-3-902613-03-5, pp.558, I-Tech, Vienna, Austria, June 2007
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recover the placements of fiducial features, corresponding to bunch graph nodes and the 
locations of local texture descriptors. In contrast, the Generic Shape-Illumination Manifold 
method uses a genetic algorithm to perform a manifold-to-manifold mapping that preserves 
pose.

Figure 1. A diagram of the main components of a generic face recognition system. The 
"Model parameter recovery" and "Classification" stages can be seen as mutually 
complementary: (i) a complex model that explicitly separates extrinsic and intrinsic 
appearance variables places most of the workload on the former stage, while the 
classification of the representation becomes straightforward; in contrast, (ii) simplistic 
models have to resort to more statistically sophisticated approaches to matching 

Figure 2. (a) The simplest generative model used for face recognition: images are assumed to 
consist of the low-frequency band that mainly corresponds to illumination changes, 
midfrequency band which contains most of the discriminative, personal information and 
white noise, (b) The results of several most popular image filters operating under the 
assumption of the frequency model 
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One of the main limitations of this group of methods arises due to the existence of local 
minima, of which there are usually many. The key problem is that if the fitted model 
parameters correspond to a local minimum, classification is performed not merely on noise-
contaminated but rather entirely incorrect data. An additional unappealing feature of these 
methods is that it is also not possible to determine if model fitting failed in such a manner. 
The alternative approach is to employ a simple face appearance model and put greater 
emphasis on the classification stage. This general direction has several advantages which 
make it attractive from a practical standpoint. Firstly, model parameter estimation can now 
be performed as a closed-form computation, which is not only more efficient, but also void 
of the issue of fitting failure such that can happen in an iterative optimization scheme. This 
allows for more powerful statistical classification, thus clearly separating well understood 
and explicitly modelled stages in the image formation process, and those that are more 
easily learnt implicitly from training exemplars. This is the methodology followed in this 
chapter. The sections that follow describe the method in detail, followed by a report of 
experimental results. 

2. Method details 

2.1 Image processing filters 

Most relevant to the material presented in this chapter are illumination-normalization 
methods that can be broadly described as quasi illumination-invariant image filters. These
include high-pass [5] and locally-scaled high-pass filters [21], directional derivatives [1, 10, 
13, 18], Laplacian-of-Gaussian filters [1], region-based gamma intensity correction filters 
[2,17] and edge-maps [1], to name a few. These are most commonly based on very simple 
image formation models, for example modelling illumination as a spatially low-frequency 
band of the Fourier spectrum and identity-based information as high-frequency [5,11], see 
Figure 2. Methods of this group can be applied in a straightforward manner to either single 
or multiple-image face recognition and are often extremely efficient. However, due to the 
simplistic nature of the underlying models, in general they do not perform well in the 
presence of extreme illumination changes.  

2.2 Adapting to data acquisition conditions 

The framework proposed in this chapter is motivated by our previous research and the 
findings first published in [3]. Four face recognition algorithms, the Generic Shape-
Illumination method [3], the Constrained Mutual Subspace Method [12], the commercial system 
Facelt and a Kullback-Leibler Divergence-based matching method, were evaluated on a large 
database using (i) raw greyscale imagery, (ii) high-pass (HP) filtered imagery and (iii) the 
Self-Quotient Image (QI) representation [21]. Both the high-pass and even further Self 
Quotient Image representations produced an improvement in recognition for all methods 
over raw grayscale, as shown in Figure 3, which is consistent with previous findings in the 
literature [1,5,11,21]. 
Of importance to this work is that it was also examined in which cases these filters help and 
how much depending on the data acquisition conditions. It was found that recognition rates 
using greyscale and either the HP or the QI filter negatively correlated (with p -0.7), as 
illustrated in Figure 4. This finding was observed consistently across the result of the four 
algorithms, all of which employ mutually drastically different underlying models.
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 a) b) 

Figure 3. Performance of the (a) Mutual Subspace Method and the (b) Constrained Mutual 
Subspace Method using raw grey scale imagery, high-pass (HP) filtered imagery and the 
Self-Quotient Image (QI), evaluated on over 1300 video sequences with extreme 
illumination, pose and head motion variation (as reported in [3]). Shown are the average 
performance and ± one standard deviation intervals 

Figure 4. A plot of the performance improvement with HP and QI filters against the 
performance of unprocessed, raw imagery across different illumination combinations used 
in training and test. The tests are shown in the order of increasing raw data performance for 
easier visualization 

This is an interesting result: it means that while on average both representations increase the 
recognition rate, they actually worsen it in "easy" recognition conditions when no 
normalization is needed. The observed phenomenon is well understood in the context of 
energy of intrinsic and extrinsic image differences and noise (see [22] for a thorough 
discussion). Higher than average recognition rates for raw input correspond to small 
changes in imaging conditions between training and test, and hence lower energy of 
extrinsic variation. In this case, the two filters decrease the signal-to-noise ratio, worsening 
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the performance, see Figure 5 (a). On the other hand, when the imaging conditions between 
training and test are very different, normalization of extrinsic variation is the dominant 
factor and performance is improved, see Figure 5 (b).  

(a) Similar acquisition conditions between sequences 

(b) Different acquisition conditions between sequences 

Figure 5. A conceptual illustration of the distribution of intrinsic, extrinsic and noise signal 
energies across frequencies in the cases when training and test data acquisition conditions 
are (a) similar and (b) different, before (left) and after (right) band-pass filtering 

This is an important observation: it suggests that the performance of a method that uses 
either of the representations can be increased further by detecting the difficulty of 
recognition conditions. In this chapter we propose a novel learning framework to do exactly 
this.

2.2.1 Adaptive framework 

Our goal is to implicitly learn how similar the novel and training (or gallery) illumination 
conditions are, to appropriately emphasize either the raw input guided face comparisons or 
of its filtered output. 

Let be a database of known individuals, novel input corresponding to one 
of the gallery classes and ( ) and F( ), respectively, a given similarity function and a quasi 
illumination-invariant filter. We then express the degree of belief µ that two face sets and 

belong to the same person as a weighted combination of similarities between the 
corresponding unprocessed and filtered image sets:

(1)
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In the light of the previous discussion, we want * to be small (closer to 0.0) when novel and 
the corresponding gallery data have been acquired in similar illuminations, and large (closer 
to 1.0) when in very different ones. We show that * can be learnt as a function:

(2)

where µ is the confusion margin - the difference between the similarities of the two most 
similar to . The value of * (µ) can then be interpreted as statistically the optimal choice of 
the mixing coefficient given the confusion margin µ. Formalizing this we can write 

(3)

or, equivalently 

(4)

Under the assumption of a uniform prior on the confusion margin, p(µ)

(5)

and

(6)

2.2.2 Learning the - function 

To learn the a-function * (µ) as defined in (3), we first need an estimate of the joint 

probability density p( , µ) as per (6). The main difficulty of this problem is of practical 
nature: in order to obtain an accurate estimate using one of many off-the-shelf density 
estimation techniques, a prohibitively large training database would be needed to ensure a 
well sampled distribution of the variable µ. Instead, we propose a heuristic alternative 
which, we will show, will allow us to do this from a small training corpus of individuals 
imaged in various illumination conditions. The key idea that makes such a drastic reduction 
in the amount of training data possible, is to use domain specific knowledge of the 
properties of p( , µ) in the estimation process. 
Our algorithm is based on an iterative incremental update of the density, initialized as a 
uniform density over the domain , µ  [0,1], see Figure 7. Given a training corpus, we 
iteratively simulate matching of an "unknown" person against a set of provisional gallery 
individuals. In each iteration of the algorithm, these are randomly drawn from the offline 
training database. Since the ground truth identities of all persons in the offline database are 
known, we can compute the confusion margin µ( ) for each  = k , using the inter-
personal similarity score defined in (1). Density is then incremented at each ((k ,

µ (0)) proportionally to µ (k ) to reflect the goodness of a particular weighting in the 
simulated recognition.
The proposed offline learning algorithm is summarized in Figure 6 with a typical evolution 
p( , µ) in Figure 7. 
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The final stage of the offline learning in our method involves imposing the monotonicity 
constraint on * (µ) and smoothing of the result, see Figure 8. 

3. Empirical evaluation 

To test the effectiveness of the described recognition framework, we evaluated its perfor-
mance on 1662 face motion video sequences from four databases: 

Figure 6. Offline training algorithm 
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Figure 7. The estimate of the joint density p( , µ) through 550 iterations for a band-pass filter 
used for the evaluation of the proposed framework in Section 3.1 
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Figure 8. Typical estimates of the  -function plotted against confusion margin µ. The 
estimate shown was computed using 40 individuals in 5 illumination conditions for a 
Gaussian high-pass filter. As expected, * assumes low values for small confusion margins 
and high values for large confusion margins (see (1)) 

CamFace with 100 individuals of varying age and ethnicity, and equally represented 
genders. For each person in the database we collected 7 video sequences of the 
person in arbitrary motion (significant translation, yaw and pitch, negligible roll), 
each in a different illumination setting, see Figure 9 (a) and 10, at l0 fps and 320 x 
240 pixel resolution (face size  60 pixels) 1.

ToshFace kindly provided to us by Toshiba Corp. This database contains 60 individuals of 
varying age, mostly male Japanese, and 10 sequences per person. Each sequence 
corresponds to a different illumination setting, at l0 fps and 320 x 240 pixel 
resolution (face size  60 pixels), see Figure 9 (b). 

Face Video freely available2 and described in [14]. Briefly, it contains 11 individuals and 2 
sequences per person, little variation in illumination, but extreme and uncontrolled 

                                                                
1 A thorough description of the University of Cambridge face database with examples of video 

sequences is available at http: //mi.eng.cam. ac.uk/~oa214/.
2 See http: / /synapse. vit. lit. nrc. ca/db/video/ faces /cvglab.
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variations in pose and motion, acquired at 25fps and 160 x 120 pixel resolution (face 
size  45 pixels), see Figure 9 (c). 

Faces96 the most challenging subset of the University of Essex face database, freely available 
from http://cswww.essex.ac.uk/mv/allfaces/ faces96 .html. It contains 152 
individuals, most 18-20 years old and a single 20-frame sequence per person in 196 
x 196 pixel resolution (face size  80 pixels). The users were asked to approach the 
camera while performing arbitrary head motion. Although the illumination was 
kept constant throughout each sequence, there is some variation in the manner in 
which faces were lit due to the change in the relative position of the user with 
respect to the lighting sources, see Figure 9 (d). 

For each database except Faces96, we trained our algorithm using a single sequence per 
person and tested against a single other sequence per person, acquired in a different session 
(for CamFace and ToshFace different sessions correspond to different illumination condi-
tions). Since Faces96 database contains only a single sequence per person, we used the first 
frames 1-10 of each for training and frames 11-20 for test. Since each video sequence in this 
database corresponds to a person walking to the camera, this maximizes the variation in 
illumination, scale and pose between training and test, thus maximizing the recognition 
challenge. 
Offline training, that is, the estimation of the a-function (see Section 2.2.2) was performed 
using 40 individuals and 5 illuminations from the CamFace database. We emphasize that 
these were not used as test input for the evaluations reported in the following section. 
Data acquisition.   The discussion so far focused on recognition using fixed-scale face 
images. Our system uses a cascaded detector [20] for localization of faces in cluttered 
images, which are then rescaled to the unform resolution of 50 x 50 pixels (approximately 
the average size of detected faces in our data set). 

• Gaussian high-pass filtered images [5,11] (HP): 

(7)

• local intensity-normalized high-pass filtered images - similar to the Self-Quotient Image 
[21] (QI): 

(8)

the division being element-wise, 

• distance-transformed edge map [3, 9] (ED): 

(9)

• Laplacian-of-Gaussian [1] (LG): 

 (10) 

and

• directional grey-scale derivatives [1,10] (DX, DY): 
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(11)

(12)

(a) Cambridge Face Database 

(b) Toshiba Face Database 

(c) Face Video Database 

(d) Faces 96 Database 

Figure 9. Frames from typical video sequences from the four databases used for evaluation 

Methods and representations. The proposed framework was evaluated using the following 
filters (illustrated in Figure 11): 
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For baseline classification, we used two canonical correlations-based [15] methods: 

• Constrained MSM (CMSM) [ 12] used in a state-of-the-art commercial system 
FacePass® [19], 

• Mutual Subspace Method (MSM) [12], and 
These were chosen as fitting the main premise of the chapter, due to their efficiency, 
numerical stability and generalization robustness [16]. Specifically, we (i) represent each 
head motion video sequence as a linear subspace, estimated using PCA from appearance 
images and (ii) compare two such subspaces by computing the first three canonical 
correlations between them using the method of Björck and Golub [6], that is, as singular 

values of the matrix where are orthonormal basis of two linear subspaces. 

(a) FaceDBlOO 

(b) FaceDB60 

Figure 10. (a) Illuminations 1-7 from database FaceDBlOO and (b) illuminations 1-10 from 
database FaceDBOO 

Figure 11. Examples of the evaluated face representations: raw grey scale input (RW), high-
pass filtered data (HP), the Quotient Image (QI), distance-transformed edge map (ED), 
Laplacian-of-Gaussian filtered data (LG) and the two principal axis derivatives (DX and DY) 

3.1 Results 

To establish baseline performance, we performed recognition with both MSM and CMSM 
using raw data first. A summary is shown in Table 3.1. As these results illustrate, the Cam-
Face and ToshFace data sets were found to be very challenging, primarily due to extreme 
variations in illumination. The performance on Face Video and Faces96 databases was sig-
nificantly better. This can be explained by noting that the first major source of appearance 
variation present in these sets, the scale, is normalized for in the data extraction stage; the 
remainder of the appearance variation is dominated by pose changes, to which MSM and 
CMSM are particularly robust to [4,16]. 
Next we evaluated the two methods with each of the 6 filter-based face representations. The 
recognition results for the CamFace, ToshFace and Faces96 databases are shown in blue in 
Figure 12, while the results on the Face Video data set are separately shown in Table 2 for the 
ease of visualization. Confirming the first premise of this work as well as previous research 
findings, all of the filters produced an improvement in average recognition rates. Little 



Achieving Illumination Invariance using Image Filters 27

interaction between method/filter combinations was found, Laplacian-of-Gaussian and the 
horizontal intensity derivative producing the best results and bringing the best and average 
recognition errors down to 12% and 9% respectively. 

a) CamFace 

(b) ToshFace 

(c) Faces96 

Figure 12. Error rate statistics. The proposed framework (-AD suffix) dramatically improved 
recognition performance on all method/filter combinations, as witnessed by the reduction 
in both error rate averages and their standard deviations. The results ofCMSM on Faces96 
are not shown as it performed perfectly on this data set 
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CamFace ToshFace FaceVideoDB Faces96 Average

CMSM 73.6 / 22.5 79.3 / 18.6 91.9 100.0 87.8

MSM 58.3 / 24.3 46.6 / 28.3 81.8 90.1 72.7

Table 1. Recognition rates (mean/STD, %) 

RW HP Qi ED LG DX DY

MSM 0.00 0.00 0.00 0.00 9.09 0.00 0.00

MSM-AD 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CMSM 0.00 9.09 0.00 0.00 0.00 0.00 0.00

CMSM-AD 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2. FaceVideoDB, mean error (%) 

Finally, in the last set of experiments, we employed each of the 6 filters in the proposed 
data-adaptive framework. The recognition results are shown in red in Figure 12 and in Table 
2 for the Face Video database. The proposed method produced a dramatic performance 
improvement in the case of all filters, reducing the average recognition error rate to only 3% 
in the case of CMSM/Laplacian-of-Gaussian combination.This is a very high recognition 
rate for such unconstrained conditions (see Figure 9), small amount of training data per 
gallery individual and the degree of illumination, pose and motion pattern variation 
between different sequences. An improvement in the robustness to illumination changes can 
also be seen in the significantly reduced standard deviation of the recognition, as shown in 
Figure 12. Finally, it should be emphasized that the demonstrated improvement is obtained 
with a negligible increase in the computational cost as all time-demanding learning is 
performed offline. 

4. Conclusions 

In this chapter we described a novel framework for automatic face recognition in the 
presence of varying illumination, primarily applicable to matching face sets or sequences. 
The framework is based on simple image processing filters that compete with unprocessed 
greyscale input to yield a single matching score between individuals. By performing all 
numerically consuming computation offline, our method both (i) retains the matching 
efficiency of simple image filters, but (ii) with a greatly increased robustness, as all online 
processing is performed in closed-form. Evaluated on a large, real-world data corpus, the 
proposed framework was shown to be successful in video-based recognition across a wide 
range of illumination, pose and face motion pattern changes. 
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