12,423 research outputs found

    Boosted LMS-based piecewise linear adaptive filters

    Get PDF
    We introduce the boosting notion extensively used in different machine learning applications to adaptive signal processing literature and implement several different adaptive filtering algorithms. In this framework, we have several adaptive constituent filters that run in parallel. For each newly received input vector and observation pair, each filter adapts itself based on the performance of the other adaptive filters in the mixture on this current data pair. These relative updates provide the boosting effect such that the filters in the mixture learn a different attribute of the data providing diversity. The outputs of these constituent filters are then combined using adaptive mixture approaches. We provide the computational complexity bounds for the boosted adaptive filters. The introduced methods demonstrate improvement in the performances of conventional adaptive filtering algorithms due to the boosting effect. © 2016 IEEE

    Adaptive pre-filtering techniques for colour image analysis

    Get PDF
    One important step in the process of colour image segmentation is to reduce the errors caused by image noise and local colour inhomogeneities. This can be achieved by filtering the data with a smoothing operator that eliminates the noise and the weak textures. In this regard, the aim of this paper is to evaluate the performance of two image smoothing techniques designed for colour images, namely bilateral filtering for edge preserving smoothing and coupled forward and backward anisotropic diffusion scheme (FAB). Both techniques are non-linear and have the purpose of eliminating the image noise, reduce weak textures and artefacts and improve the coherence of colour information. A quantitative comparison between them will be evaluated and also the ability of such techniques to preserve the edge information will be investigated

    2D Face Recognition System Based on Selected Gabor Filters and Linear Discriminant Analysis LDA

    Full text link
    We present a new approach for face recognition system. The method is based on 2D face image features using subset of non-correlated and Orthogonal Gabor Filters instead of using the whole Gabor Filter Bank, then compressing the output feature vector using Linear Discriminant Analysis (LDA). The face image has been enhanced using multi stage image processing technique to normalize it and compensate for illumination variation. Experimental results show that the proposed system is effective for both dimension reduction and good recognition performance when compared to the complete Gabor filter bank. The system has been tested using CASIA, ORL and Cropped YaleB 2D face images Databases and achieved average recognition rate of 98.9 %

    Performance evaluation of channel estimation techniques for a mobile fourth generation wide area OFDM system

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available
    • 

    corecore