12,690 research outputs found

    Jet Charge and Machine Learning

    Full text link
    Modern machine learning techniques, such as convolutional, recurrent and recursive neural networks, have shown promise for jet substructure at the Large Hadron Collider. For example, they have demonstrated effectiveness at boosted top or W boson identification or for quark/gluon discrimination. We explore these methods for the purpose of classifying jets according to their electric charge. We find that both neural networks that incorporate distance within the jet as an input and boosted decision trees including radial distance information can provide significant improvement in jet charge extraction over current methods. Specifically, convolutional, recurrent, and recursive networks can provide the largest improvement over traditional methods, in part by effectively utilizing distance within the jet or clustering history. The advantages of using a fixed-size input representation (as with the CNN) or a small input representation (as with the RNN) suggest that both convolutional and recurrent networks will be essential to the future of modern machine learning at colliders.Comment: 17 pages, 8 figures, 1 table; Updated to JHEP versio

    Multi-Path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained "Hard Faces"

    Full text link
    Large-scale variations still pose a challenge in unconstrained face detection. To the best of our knowledge, no current face detection algorithm can detect a face as large as 800 x 800 pixels while simultaneously detecting another one as small as 8 x 8 pixels within a single image with equally high accuracy. We propose a two-stage cascaded face detection framework, Multi-Path Region-based Convolutional Neural Network (MP-RCNN), that seamlessly combines a deep neural network with a classic learning strategy, to tackle this challenge. The first stage is a Multi-Path Region Proposal Network (MP-RPN) that proposes faces at three different scales. It simultaneously utilizes three parallel outputs of the convolutional feature maps to predict multi-scale candidate face regions. The "atrous" convolution trick (convolution with up-sampled filters) and a newly proposed sampling layer for "hard" examples are embedded in MP-RPN to further boost its performance. The second stage is a Boosted Forests classifier, which utilizes deep facial features pooled from inside the candidate face regions as well as deep contextual features pooled from a larger region surrounding the candidate face regions. This step is included to further remove hard negative samples. Experiments show that this approach achieves state-of-the-art face detection performance on the WIDER FACE dataset "hard" partition, outperforming the former best result by 9.6% for the Average Precision.Comment: 11 pages, 7 figures, to be presented at CRV 201

    Fusion of Multispectral Data Through Illumination-aware Deep Neural Networks for Pedestrian Detection

    Get PDF
    Multispectral pedestrian detection has received extensive attention in recent years as a promising solution to facilitate robust human target detection for around-the-clock applications (e.g. security surveillance and autonomous driving). In this paper, we demonstrate illumination information encoded in multispectral images can be utilized to significantly boost performance of pedestrian detection. A novel illumination-aware weighting mechanism is present to accurately depict illumination condition of a scene. Such illumination information is incorporated into two-stream deep convolutional neural networks to learn multispectral human-related features under different illumination conditions (daytime and nighttime). Moreover, we utilized illumination information together with multispectral data to generate more accurate semantic segmentation which are used to boost pedestrian detection accuracy. Putting all of the pieces together, we present a powerful framework for multispectral pedestrian detection based on multi-task learning of illumination-aware pedestrian detection and semantic segmentation. Our proposed method is trained end-to-end using a well-designed multi-task loss function and outperforms state-of-the-art approaches on KAIST multispectral pedestrian dataset

    Pulling Out All the Tops with Computer Vision and Deep Learning

    Full text link
    We apply computer vision with deep learning -- in the form of a convolutional neural network (CNN) -- to build a highly effective boosted top tagger. Previous work (the "DeepTop" tagger of Kasieczka et al) has shown that a CNN-based top tagger can achieve comparable performance to state-of-the-art conventional top taggers based on high-level inputs. Here, we introduce a number of improvements to the DeepTop tagger, including architecture, training, image preprocessing, sample size and color pixels. Our final CNN top tagger outperforms BDTs based on high-level inputs by a factor of ∼2\sim 2--3 or more in background rejection, over a wide range of tagging efficiencies and fiducial jet selections. As reference points, we achieve a QCD background rejection factor of 500 (60) at 50\% top tagging efficiency for fully-merged (non-merged) top jets with pTp_T in the 800--900 GeV (350--450 GeV) range. Our CNN can also be straightforwardly extended to the classification of other types of jets, and the lessons learned here may be useful to others designing their own deep NNs for LHC applications.Comment: 33 pages, 11 figure
    • …
    corecore