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a b s t r a c t 

Multispectral pedestrian detection has received extensive attention in recent years as a promising solution to 

facilitate robust human target detection for around-the-clock applications ( e.g., security surveillance and au- 

tonomous driving). In this paper, we demonstrate illumination information encoded in multispectral images can 

be utilized to boost the performance of pedestrian detection significantly. A novel illumination-aware weighting 

mechanism is present to depict illumination condition of a scene accurately. Such illumination information is 

incorporated into two-stream deep convolutional neural networks to learn multispectral human-related features 

under different illumination conditions (daytime and nighttime). Moreover, we utilized illumination information 

together with multispectral data to generate more accurate semantic segmentation which is used to supervise 

the training of pedestrian detector. Putting all of the pieces together, we present an effective framework for 

multispectral pedestrian detection based on multi-task learning of illumination-aware pedestrian detection and 

semantic segmentation. Our proposed method is trained end-to-end using a well-designed multi-task loss function 

and outperforms state-of-the-art approaches on KAIST multispectral pedestrian dataset. 
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. Introduction 

Pedestrian detection becomes a very important research topic within

he area of computer vision in the past decades [4,5,9,11,12,31,44] .

iven images captured in various real-world surveillance situations, the

edestrian detector should generate accurate bounding boxes to locate

ndividual pedestrian targets. It provides an essential functionality to

acilitate a board range of human-centric applications, such as video

onitoring [1,26,39] and autonomous driving [25,40,42] . 

Although significant improvements have been accomplished during

ecent years, developing a robust pedestrian detector remains a chal-

enging task. It is noticed that most existing pedestrian detectors are

rained using visible information alone thus their performances are sen-

itive to changes of illumination, weather, and occlusions. To overcome

he aforementioned limitations, many research works have been focused

n the development of multispectral pedestrian detection solutions to

nable accurate and robust human detection for around-the-clock ap-

lication [14,17,22,23,30,37] . The underlying intuition is that multi-

pectral images ( e.g., visible and thermal) contain complementary in-

ormation of the targets, thus the effective fusion of such data can lead

o more accurate and stable detections. 

In this work, we present a framework for learning multispectral

uman-related characteristics under various illumination conditions
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daytime and nighttime) through the proposed illumination-aware deep

eural networks. We observed that multispectral pedestrian samples

resent different features under both day and night illumination con-

itions as illustrated in Fig. 1 . Therefore, using multiple built-in sub-

etworks, each of which specializes in capturing illumination-specific

isual patterns, provides an effective solution to handle substantial

ntra-class variances caused by illumination changes. Illumination in-

ormation can be robustly estimated based on multispectral data and is

urther infused into multiple illumination-aware sub-networks to learn

ultispectral semantic feature maps for simultaneous pedestrian detec-

ion and semantic segmentation under different illumination conditions.

iven a pair of multispectral images captured during the daytime, our

roposed illumination-aware weighting mechanism adaptively assigns

 high weight for day-illumination sub-networks (pedestrian detection

nd semantic segmentation) to learn human-related characteristics in

he daytime. In comparison, multispectral images of a nighttime scene

re utilized to train night-illumination sub-networks. We provide an il-

ustration of how this illumination-aware weighting mechanism works

n Fig. 2 . Detections are generated by fusing the outputs of multiple

llumination-aware sub-networks and remain robust to large variance

f scene illumination. The contributions of this work are as follows. 

Firstly, we demonstrate that illumination condition of a scene can

e robustly determined through an architecture of fully connected
 November 2018 
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(a) Daytime illumination

(b) Nighttime illumination

Fig. 1. Characteristics of multispectral pedestrian instances captured in (a) day- 

time and (b) nighttime scenes. The first rows in (a) and (b) show the multispec- 

tral picture of pedestrian instances. The second rows in (a) and (b) show the fea- 

ture map visualizations of the corresponding pedestrian instances. The feature 

maps of visible and thermal images are generated using the deep neural region 

proposal networks (RPN) [41] well-trained in their corresponding channels. It is 

observed that multispectral pedestrian samples present different characteristics 

under day and night illumination conditions. 
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eural networks by considering multispectral semantic features and the

stimated illumination weights provide useful information to boost the

erformance of pedestrian detection. 

Secondly, we incorporate an illumination-aware mechanism into

wo-stream deep convolutional neural networks to learn multispectral

uman-related features under different illumination conditions (day-

ime and nighttime). To the best of our knowledge, we are the first

o utilize illumination information for training multispectral pedestrian

etector. 

Thirdly, we present a complete framework for multispectral pedes-

rian detection based on joint learning of illumination-aware pedestrian

etection and semantic segmentation which is trained end-to-end using

 well-designed multi-task loss, achieving higher accuracy and faster
149 
untime in comparison with the current state-of-the-art multispectral

etectors [17,19,20] . 

. Related work 

In this section, we review a number of pedestrian detectors using

isible, thermal and multispectral images, which are relevant to our re-

earch work. 

Visible and thermal pedestrian detection: Many successful pedes-

rian detection solutions using visible images have been reported in

he literature. Integrate Channel Features (ICF) pedestrian detector pre-

ented by Piotr et al. is based on feature pyramids and boosted clas-

ifiers [7] . Its performance has been further improved through mul-

iple techniques including ACF [8] , LDCF [29] , and Checkerboards

43] etc. Recently, object detection models based on deep neural net-

orks [13,15,34] have been used to improve the accuracy of pedestrian

etection. Li et al. [24] proposed a unified deep network framework in

hich scale-aware sub-networks are combined to depict unique pedes-

rian features at different scales. Cai et al. presented a unified archi-

ecture of multi-scale deep neural networks to combine complementary

cale-specific detectors. Such architecture provides a number of recep-

ive fields to identify objects of different scales. Zhang et al. [41] made

se of high-resolution convolutional feature maps for classification and

resented a powerful detector for pedestrian detection based on region

roposal networks (RPN) and boosted trees. Mao et al. [28] proposed

 multi-task training framework, utilizing the information of given fea-

ures to improve detection performance without extra inputs in infer-

nce. Brazil et al. [3] developed a segmentation infusion scheme to boost

edestrian detection accuracy with the joint supervision on target detec-

ion and semantic segmentation. Experimental results verified that the

eakly annotated boxes provide sufficient information to achieve con-

iderable performance gains. Davis et al. presented a template-based

pproach to localize pedestrians in thermal images captured in vary-

ng scenes. Potential persons are initially located using a generalized

emplate and further verified through an AdaBoosted ensemble classi-

er [6] . Recently, multidimensional templates based on local steering

ernel (LSK) descriptors were proposed by Biswas et al. for detecting

edestrians in low resolution and noisy infrared images [2] . However,

trong solar radiation will cause background clutters and false detec-

ions in the daytime thermal images. 

Multispectral pedestrian detection: Multispectral sensors (e.g.,

isible and thermal) capture information of target objects in comple-

entary spectral channels. As a result, pedestrian detectors trained us-

ng multi-modal data produce robust detection results. Hwang et al.

17] built up a large-size multispectral pedestrian benchmark dataset
Fig. 2. Illustration of our proposed 

illumination-aware weighting mechanism. 

Given well-aligned multispectral images, 

two-stream deep neural networks (TDNN) 

generate multispectral semantic feature maps. 

Day-illumination sub-networks and night- 

illumination ones utilize the multispectral 

semantic feature maps for pedestrian detection 

and semantic segmentation under different 

illumination conditions. Detections are gener- 

ated by fusing the outputs of day-illumination 

sub-networks and night-illumination ones with 

the computed illumination-aware weights 𝜔 d 
and 𝜔 n . 
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d  
KAIST), which contains well-aligned visible/thermal images and dense

edestrian annotations. The authors also presented a new technique

o extract multispectral aggregated features (ACF+T+THOG) and ap-

lied boosted decision trees (BDT) for target classification. Wagner et al.

38] presented the first application of DNNs for multispectral pedes-

rian detection and evaluated the performance of two decision networks

early-fusion and late-fusion). Liu et al. [19] investigated how to uti-

ize Faster R-CNN [34] for multispectral pedestrian detection and de-

igned four ConvNet fusion architectures in which two-branch ConvNets

re integrated at different DNNs stages. The optimal architecture is the

alfway Fusion model which merges two-branch ConvNets using the

iddle-level convolutional features. König et al. [20] presented an ef-

ective Fusion RPN+BDT model, in which two-stream deep neural net-

orks are merged in the middle-level convolutional layers. Xu et al.

roposed a new cross-modality transferring framework to learn the re-

ations between color and thermal data and to improve the robustness of

etectors against significant illumination changes. However, this mul-

ispectral pedestrian detector only considers visible images during the

esting stage. Therefore, its performance is not comparable with mul-

ispectral detectors using both color and thermal data (e.g., Halfway

usion model [19] and Fusion RPN+BDT [20] ). Park et al. presented

 three-branch DNN architecture, capable of handling multi-modal in-

uts [32] . A channel weighting fusion (CWF) layer is developed to im-

rove the detection performance by considering all detection proba-

ilities from each modality. Recently, Loveday et al. developed an or-

hogonal dual camera imaging system to capture parallax-free and well-

ligned multispectral images [27] . It is experimentally shown that visi-

le and infrared data fusion achieves improved overall performance of

oreground object detection than using single-channel visible or infrared

nformation. 

It is worth mentioning that our approach is distinctly different from

he above methods. A unified framework is proposed to learn multi-

pectral human-related features under different illumination conditions

daytime and nighttime) through the proposed illumination-aware mul-

ispectral deep neural networks. To the best of our knowledge, this is

he first research work exploring illumination information to boost the

erformance of multispectral pedestrian detector. 

. Our approach 

.1. Overview of the proposed model 

As illustrated in Fig. 3 , the architecture of illumination-aware mul-

ispectral deep neural networks consists of three integrated process-

ng modules including illumination fully connected neural networks

IFCNN), illumination-aware two-stream deep convolutional neural
150 
etworks (IATDNN), and illumination-aware multispectral semantic

egmentation (IAMSS). Given aligned visible and thermal images,

FCNN computes the illumination-aware weights to determine whether

t is a daytime scene or night one. Through the proposed illumination-

ware mechanism, IATDNN and IAMSS make use of multi sub-networks

o simultaneously generate classification scores (Cls), bounding boxes

Bbox), and segmentation masks (Seg). For instance, IATDNN employ

wo individual classification sub-networks (D-Cls and N-Cls) for human

lassification under day and night illuminations. Cls, Bbox, and Seg

esults of each sub-networks are integrated to obtain the final output

hrough a gate function which is defined over the illumination condi-

ion of a scene. Our proposed method is trained end-to-end based on

ulti-task learning of illumination-aware pedestrian detection and se-

antic segmentation. 

.2. Illumination fully connected neural networks (IFCNN) 

As shown in Fig. 3 , a pair of visible and infrared images are passed

nto the first five convolutional layers and pooling ones of two-stream

eep convolutional neural networks (TDNN) [20] to extract semantic

eatures in each stream. Each stream of feature extraction layers in

DNN uses Conv1-5 from VGG-16 [36] as the backbone. Then feature

aps from two channels are fused to generate the two-stream feature

aps (TSFM) through a concatenate layer (Concat). TSFM is utilized

s the input of IFCNN to compute illumination-aware weights 𝜔 d and

 𝑛 = (1 − 𝜔 𝑑 ) which determine the illumination condition of a scene. 

The IFCNN consist of a pooling layer (IA-Pool), three fully connected

ayers (IA-FC1, IA-FC2, IA-FC3), and the soft-max layer (Soft-max). Sim-

lar to the spatial pyramid pooling (SPP) layer which removes the fixed-

ize constraint of the network [16] , IA-Pool resizes the features of TSFM

o a fixed-length figure maps (7 ×7) using bilinear interpolation and

enerates fixed-size outputs for the fully connected layers. The number

f channels in IA-FC1, IA-FC2, IA-FC3 are empirically set to 512, 64, 2

espectively. Soft-max is the final layer of IFCNN. The outputs of Soft-

ax are 𝜔 d and 𝜔 n . We define the illumination error term L I as 

 𝐼 = − ̂𝜔 𝑑 ⋅ log ( 𝜔 𝑑 ) − �̂� 𝑛 ⋅ log ( 𝜔 𝑛 ) , (1)

here 𝜔 d and 𝜔 𝑛 = (1 − 𝜔 𝑑 ) are the estimated illumination weights for

ay and night scenes, �̂� 𝑑 and �̂� 𝑛 = (1 − �̂� 𝑑 ) are the illumination labels. If

he training images are captured under daytime illumination conditions,

e set �̂� 𝑑 = 1 , otherwise �̂� 𝑑 = 0 . 

.3. Illumination-aware two-stream deep convolutional neural networks 

IATDNN) 

The architecture of IATDNN is designed based on the two-stream

eep convolutional neural networks (TDNN) [20] . RPN model [41] is
Fig. 3. The architecture of our proposed 

illumination-aware multispectral deep neural 

networks (IATDNN+IAMSS). Note that green 

boxes denote convolutional layers and fully- 

connected ones, yellow boxes denote pooling 

layers, blue boxes denote fusion layers, gray 

boxes denote segmentation layers, and orange 

boxes denote output layers. Should be viewed 

in color. (For interpretation of the references 

to color in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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Fig. 4. The comparison of (a) TDNN and (b) IATDNN architectures. Note that 𝜔 d 
and 𝜔 n are the computed illumination-aware weights, green boxes denote con- 

volutional layers and fully-connected ones, yellow boxes denote pooling layers, 

blue boxes denote fusion layers, and orange boxes denote output layers. Should 

be viewed in color. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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t  
dopted in IATDNN due to its superior performance for pedestrian

etection. Given a single input image, RPN outputs a number of

ounding boxes associated with confident scores to generate pedestrian

roposals through classification and bounding box regression. As shown

n Fig. 4 (a), a 3 ×3 convolutional layer (Conv-Pro) is attached after the

oncat layer with two sibling 1 ×1 convolutional layers (Cls and Bbox)

or classification and bounding box regression respectively. TDNN

odel provides an effective framework to utilize TSFM for robust

edestrian detection. 

We further incorporate illumination information into TDNN to gen-

rate classification and regression results for various illumination con-

itions. Specifically, IATDNN contains four sub-networks (D-Cls, N-Cls,

-Bbox, and N-Bbox) to produce illumination-aware detection results as

hown in Fig. 4 (b). D-Cls and N-Cls calculate classification scores under

ay and night illumination conditions while D-Bbox and N-Bbox gen-

rate bounding boxes for daytime and nighttime scenes respectively.

he outputs of these sub-networks are combined using the illuminat-

ng weights calculated in IFCNN to produce final detection results. The

etection loss term L DE is defined as 

 𝐷 = 

∑

𝑖 ∈𝑆 
𝐿 𝑐𝑙𝑠 ( 𝑐 

𝑓 

𝑖 
, ̂𝑐 𝑖 ) + 𝜆𝑏𝑏 ⋅ 𝑐 𝑖 ⋅

∑

𝑖 ∈𝑆 
𝐿 𝑏𝑏𝑜𝑥 ( 𝑏 

𝑓 

𝑖 
, ̂𝑏 𝑖 ) , (2)

here L DE defines the sum of classification loss L cls and regression loss

 bbox , 𝜆bb defines the regularization parameter between them (we set

𝑏𝑏 = 5 following previous work [41] ), S defines the set of training

amples in a mini-batch. A training sample is considered positive if its

ntersection-over-Union (IoU) ratio with one ground truth bounding box

s greater than 0.5, and otherwise negative. Here the training label 𝑐 𝑖 is

et to 1 for positive samples and 0 for negative ones. For each positive

ample, its bounding box is set to �̂� 𝑖 for computing the bounding box

egression loss. In Eq. (2) , the classification loss term L cls is defined as 

 𝑐𝑙𝑠 ( 𝑐 
𝑓 

𝑖 
, ̂𝑐 𝑖 ) = − ̂𝑐 𝑖 ⋅ log ( 𝑐 𝑓 

𝑖 
) − (1 − 𝑐 𝑖 ) ⋅ log (1 − 𝑐 

𝑓 

𝑖 
) , (3)

nd the regression loss term L bbox is defined as 

 𝑏𝑏𝑜𝑥 ( 𝑏 
𝑓 

𝑖 
, ̂𝑏 𝑖 ) = 

∑
𝑠𝑚𝑜𝑜𝑡ℎ 𝐿 1 

( 𝑏 𝑓 
𝑖𝑗 
, ̂𝑏 𝑖𝑗 ) (4)

here 𝑐 
𝑓 

𝑖 
and 𝑏 

𝑓 

𝑖 
are the predicted classification score and bounding

ox respectively, and the L 1 loss function 𝑠𝑚𝑜𝑜𝑡ℎ 𝐿 1 is defined in [13] to
151 
earn the transformation mapping between 𝑏 
𝑓 

𝑖 
and �̂� 

𝑓 

𝑖 
. In IATDNN, 𝑐 

𝑓 

𝑖 
is

alculated as the weighted sum of day-illumination classification score

 

𝑑 
𝑖 

and night-illumination classification score 𝑐 𝑛 
𝑖 

as 

 

𝑓 

𝑖 
= 𝜔 𝑑 ⋅ 𝑐 

𝑑 
𝑖 
+ 𝜔 𝑛 ⋅ 𝑐 

𝑛 
𝑖 
, (5)

nd 𝑏 
𝑓 

𝑖 
is the illumination weighted combination of two bounding boxes

 

𝑑 
𝑖 

and 𝑏 𝑛 
𝑖 

predicted by D-Bbox and N-Bbox sub-networks respectively as

 

𝑓 

𝑖 
= 𝜔 𝑑 ⋅ 𝑏 

𝑑 
𝑖 
+ 𝜔 𝑛 ⋅ 𝑏 

𝑛 
𝑖 
. (6)

hrough the above illumination weighting mechanism, the day-

llumination sub-networks (classification and regression) will be given

 high priority to learn human-related characteristics in daytime scenes.

n the other hand, multispectral feature maps of a nighttime scene are

tilized to generate reliable detection results under night-illumination

onditions. 

.4. Illumination-aware multispectral semantic segmentation (IAMSS) 

Recently, semantic segmentation masks have been successfully used

s strong cues to improve the performance of single channel based ob-

ect detection [3,15] . The simple box-based segmentation masks provide

dditional supervision to guide features in shared layers become more

istinctive for the downstream pedestrian detector. In this paper, we in-

orporate the semantic segmentation scheme with two-stream deep con-

olutional neural networks to enable simultaneous pedestrian detection

nd segmentation on multispectral images. 

Given information from two multispectral channels (visible and ther-

al), fusion at different stages (feature-stage and decision-stage) would

ead to different segmentation results. Therefore, we hope to investigate

hat is the best fusion architecture for multispectral segmentation task.

o this end, we design two multispectral semantic segmentation archi-

ectures that perform fusions at different stages, denoted as feature-stage

ultispectral semantic segmentation (MSS-F) and decision-stage multi-

pectral semantic segmentation (MSS). As shown in Fig. 5 (a) and (b),

SS-F firstly concatenates the feature maps from Conv5-V and Conv5-

 and then applies a common Conv-Seg layer to produce segmentation

asks. In comparison, MSS applies two convolutional layers (Conv-Seg-

 and Conv-Seg-T) to produce different segmentation maps for individ-

al channels and then combine two-stream outputs to generate the final

egmentation masks. 

Moreover, we hope to investigate whether the performance of se-

antic segmentation can be boosted by considering the illumination

ondition of the scene. Based on MSS-F and MSS architectures, we de-

ign two more illumination-aware multispectral semantic segmentation

etworks (IAMSS-F and IAMSS). Two segmentation sub-networks (D-

eg and N-seg) are employed to generate illumination-aware semantic

egmentation results as shown in Fig. 5 (c) and (d). Note that IAMSS-

 contains two sub-networks and IAMSS contains four sub-networks.

he outputs of these sub-networks are fused through the illumination

eighting mechanism to generate the multispectral semantic segmen-

ation using the illuminating weights predicted by IFCNN. In Section 4 ,

e provide evaluation results of these four different multispectral seg-

entation architectures. 

The segmentation loss term is defined as 

 𝑆 = 

∑

𝑖 ∈𝐶 

∑

𝑗∈𝑆 
[− ̂𝑠 𝑗 ⋅ log ( 𝑠 𝑓 

𝑖𝑗 
) − (1 − ̂𝑠 𝑗 ) ⋅ log (1 − 𝑠 

𝑓 

𝑖𝑗 
)] , (7)

here 𝑠 
𝑓 

𝑖𝑗 
defines the predicted segmentations, C defines segmentation

treams (MSS-F and IAMSS-F contain only one segmentation stream

hile MSS and IAMSS contain two streams), and S defines the set of

raining samples in a mini-batch. Here the training segmentation mask

̂ 𝑖 is set to 1 for positive samples and 0 for negative ones. 

In illumination-aware multispectral semantic segmentation architec-

ures IAMSS-F and IAMSS, 𝑠 
𝑓 

𝑖𝑗 
is the illumination weighted combination
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Fig. 5. The comparison of (a) MSS-F, (b) MSS, (c) IAMSS-F and (d) IAMSS architectures. Note that green boxes denote convolutional layers, blue boxes denote 

fusion layers, and gray boxes denote segmentation layers. Should be viewed in color. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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Table 1 

Configurations of our proposed IATDNN, IFCNN, and IAMSS modules. The input 

sizes of visible and thermal channels are both 960 ×768 ×3. The first five con- 

volutional layers in the visible and thermal streams (Conv1-V to Conv5-V and 

Conv1-T to Conv5-T) make use of Conv1-5 from VGG-16 [36] as the backbone. 

Module Layers Output size Operation 

IATDNN Conv5-V/T 60 ×48 ×512 

Concat 60 ×48 ×1024 concatenation 

Conv-Pro 60 ×48 ×512 3 ×3 conv 

D/N-Cls 60 ×48 ×18 1 ×1 conv 

Cls 60 ×48 ×18 sum 

D/N-Reg 60 ×48 ×36 1 ×1 conv 

Reg 60 ×48 ×36 sum 

IFCNN IA-Pool 7 ×7 ×512 interpolation 

IA-FC1 512 inner product 

IA-FC2 64 inner product 

IA-FC3 2 inner product 

IAMSS Conv-Seg-V/T 60 ×48 ×512 3 ×3 conv 

D/N-Seg-V/T 60 ×48 ×2 1 ×1 conv 

D/N-Seg-V/T 60 ×48 ×2 sum 
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f two segmentation masks 𝑠 𝑑 
𝑖𝑗 

and 𝑠 𝑛 
𝑖𝑗 

predicted by D-Seg and N-Seg

ub-networks respectively as 

 

𝑓 

𝑖𝑗 
= 𝜔 𝑑 ⋅ 𝑠 

𝑑 
𝑖𝑗 
+ 𝜔 𝑛 ⋅ 𝑠 

𝑛 
𝑖𝑗 
. (8)

We integrate the loss terms defined in Eqs. (1), (2), (7) to conduct

ulti-task learning of illumination-aware pedestrian detection and seg-

entation. The multi-task loss function is defined as 

 𝐼+ 𝐷+ 𝑆 = 𝐿 𝐷 + 𝜆𝑖𝑎 ⋅ 𝐿 𝐼 + 𝜆𝑠𝑚 ⋅ 𝐿 𝑆 (9)

here 𝜆ia and 𝜆sm 

are the trade-off coefficient of loss term L I and L S 
espectively. We set 𝜆𝑖𝑎 = 1 and 𝜆𝑠𝑚 = 1 according to the method pre-

ented by Brazil et al. [3] . We make use of this loss function to jointly

rain illumination-aware multispectral deep neural networks. 

. Experiments 

.1. Experimental setup 

Datasets: The public KAIST multispectral pedestrian benchmark

17] is utilized to perform our experiments. The KAIST training dataset

onsists of 50,172 pairs of well-aligned multispectral images captured

sing visible and infrared cameras under different lighting conditions.

ollowing the previous work [20] , images are sampled every two frames

n the training dataset, and 25,086 pairs of training images are obtained.

he KAIST testing dataset consists of 2252 pairs of multispectral images,

n which 1455 pairs were captured during the daytime. We evaluate

he detection performance use the KAIST testing annotations following

he reasonable setting introduced in [17] . It is noted that the CVC-14

14] is another multispectral pedestrian benchmark containing visible-

hermal image pairs. However, this multi-modal dataset was acquired

sing a stereo-vision system and the visible and thermal images are not

roperly aligned. Moreover, the annotations are individually generated

n thermal and visible channels. Some pedestrian annotations are only

enerated in one channel but not available in another one. Therefore,

e only make use of the KAIST dataset for performance evaluation in

his paper. 

Implementation details: We train all the multispectral pedestrian

etectors using the image-centric training scheme [41] . Every mini-

atch contains 1 image and 120 anchors, which are randomly selected.

n anchor is considered as positive if its IoU ratio with one ground truth

ox is greater than 0.5, and otherwise negative. The first five convolu-

ional layers in each stream of TDNN are initialized using parameters

f the first five convolutional layers in VGG-16 [36] deep neural net-

orks, which are pre-trained on the large-scale ImageNet dataset [35] .

he fully connected layers and all the other convolutional ones are ini-

ialized with a zero-mean Gaussian distribution with standard deviation.

ee Table 1 for the detailed configurations of individual modules. The

ource code of our proposed model and the detection results will be
152 
ade publicly available in the future. Deep neural networks are trained

n the Caffe [18] framework with Stochastic Gradient Descent (SGD)

45] with a momentum of 0.9 and a weight decay of 0.0005 [21] . To

void learning failures caused by exploding gradients [33] , a threshold

f 10 is used to clip the gradients. 

Evaluation metrics: The log-average miss rate (MR) [8] is utilized

o evaluate the performance of various multispectral pedestrian detec-

ion algorithms. Following previous work [17] , a detected bounding box

esult is counted as a true positive if the IoU with a ground truth one

xceeds 50%. Unmatched detected bounding boxes are counted as false

ositives and unmatched ground truth ones are counted as false nega-

ives. According to the method presented by Dollar et al. [8] , any de-

ected bounding box matched with any ignore ground truth label will

ot be considered as true positives and any unmatched ignore ground

ruth label will not be considered as false negatives. We compute the MR

y averaging the missing rate calculated at nine false positives per image

FPPI) values evenly spaced in log-space from 10 −2 to 10 0 [17,19,20] . 

.2. Evaluation on IFCNN 

The illumination weighting mechanism provides an essential func-

ionality in our proposed illumination-aware deep neural networks.

e first evaluate whether IAFCNN can accurately calculate the illu-

ination weights which provide critical information to balance out-

uts of illumination-aware sub-networks. We utilize the KAIST testing

ataset, which contains multispectral images taken during daytime

1,455 frames) and nighttime (797 frames), to evaluate the performance
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Fig. 6. The architecture of (a) IFCNN, (b) IFCNN-V and (c) IFCNN-T. Note that 

green boxes denote convolutional layers and fully connected ones, yellow boxes 

denote pooling layers, blue boxes denote fusion layers, and orange boxes denote 

soft-max layers. Should be viewed in color. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Table 2 

Accuracy of illumination prediction using IFCNN-V, 

IFCNN-T, and IFCNN. The best results are highlighted in 

bold. 

Daytime Nighttime 

IFCNN-V 97.94% 97.11% 

IFCNN-T 93.13% 94.48% 

IFCNN 98.35% 99.75% 
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Table 3 

The calculated MRs of TDNN and IATDNN. The best re- 

sults are highlighted in bold. 

All-day Daytime Nighttime 

TDNN 32.60% 33.80% 30.53% 

IATDNN 29.62% 30.30% 26.88% 
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f IAFCNN. Given a pair of well-aligned multispectral images, IAFCNN

ill output a day-illumination weight 𝜔 d . The illumination condition

s correctly predicted if 𝜔 d > 0.5 for a daytime scene or 𝜔 d < 0.5 for a

ighttime one. Moreover, we evaluate the performance of illumination

rediction using feature maps extracted using visible images (IFCNN-V)

r thermal ones (IFCNN-T) individually, to investigate which channel

rovides the most reliable information to determine illumination con-

ition of a scene. The architectures of IFCNN-V, IFCNN-T, and IFCNN

re shown in Fig. 6 and their prediction accuracies are compared in

able 2 . 

It is observed that information from the visible channel can be

sed to generate reliable illumination prediction for both daytime and

ighttime scenes (daytime - 97.94% and nighttime - 97.11%). This is

 reasonable result as a human can easily determine it is a daytime

cene or a nighttime one based on visual observation. Although ther-

al channel cannot be individually used for illumination prediction,

t provides supplementary information to the visible channel to en-

ance the performance of illumination prediction. Through the fusion

f complementary information of visible and thermal channels, IFCNN

ompute more accurate illumination weights compared with IFCNN-V

using only visible images) and IFCNN-T (using only thermal images).

ig. 7 shows some cases when IFCNN fails. When the illumination con-

ition is not good during daytime or street lights provide good illumina-

ion during nighttime, the IFCNN model will generate false prediction

esults. Overall, the illumination condition of a scene can be robustly

etermined based on IFCNN by considering multispectral semantic

eatures. 
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.3. Evaluation of IATDNN 

We further evaluate whether illuminate information can be utilized

o boost the performance of multispectral pedestrian detector. Specifi-

ally, we evaluate the performances of TDNN and IATDNN without us-

ng information of semantic segmentation. The illumination loss term

escribed in Eq. (1) and detection loss term described in Eq. (2) are

ombined to jointly train IAFCNN and IATDNN, and use the detection

oss term to train TDNN. TDNN model provides an effective framework

o utilize multispectral features for robust pedestrian detection [20] .

owever, it does not differentiate human instances under day and night

llumination conditions and uses a common Con-Prov layer to generate

etection results. In comparison, IATDNN apply an illumination weight-

ng mechanism to adaptively combine outputs of multiple illumination-

ware sub-networks (D-Cls, N-Cls, D-Reg, N-Reg) to generate the final

etection results. 

MR is utilized as the evaluation metrics and the comparative results

re shown in Table 3 . Through the illumination weighting mechanism,

ATDNN significantly improve detection accuracy for both daytime and

ighttime scenes. It also worth mentioning that such performance gain

TDNN 32.60% MR v.s. IATDNN 29.62% MR) is achieved at the cost of

mall computational overhead. Based on a single Titan X GPU, TDNN

odel takes 0.22s to process a paired of visible and thermal images

640 ×512 pixels) while IATDNN model needs 0.24s. More comparative

esults of computational efficiency are provided in Section 4.5 . The ex-

erimental results demonstrate that illumination information can be in-

used into multiple illumination-aware sub-networks for better learning

f human-related feature maps to boost the performance of pedestrian

etector. 

.4. Evaluation of IAMSS 

The performance gain of combining illumination-aware multi-

pectral segmentation scheme with IATDNN is further evaluated.

ere we consider four different multispectral semantic segmentation

odels including MSS-F (feature-stage MSS), MSS (decision-stage

SS), IAMSS-F (illumination-aware feature-stage MSS) and IAMSS

illumination-aware decision-stage MSS). Architectures of these four

odels are shown in Fig. 5 . Multispectral semantic segmentation mod-

ls output a number of box-based segmentation masks, and such weakly

nnotated boxes provide useful information to enable the training of

ore distinctive features in IATDNN. The detection performance of

ATDNN, IATDNN+MSS-F, IATDNN+MSS and IATDNN+IAMSS-F

nd IATDNN+IAMSS are compared in Table 4 . 

It is observed that integrating the semantic segmentation module

ith the illumination-aware pedestrian detection can generally achieve
Fig. 7. Samples of false IFCNN prediction re- 

sults during (a) daytime and (b) nighttime. 

When the illumination condition is not good 

during daytime or street lights provide good 

illumination during the nighttime, the IFCNN 

model will generate false prediction results. 
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Fig. 8. Examples of multispectral pedestrian semantic segmentation results using four different multispectral sematic segmentation models in (a) daytime and (b) 

nighttime scenes. The first two columns show the pictures of visible and thermal pedestrian instances respectively. The third to the sixth columns show the semantic 

segmentation results of MSS-F, MSS, IAMSS-F, and IAMSS respectively. It should be noted that green bounding boxes (BBs) in solid line denote positive labels, yellow 

BBs in dashed line denote ignore ones. Best viewed in color. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Table 4 

Detection results (MR) of IATDNN, IATDNN+MSS-F, IATDNN+MSS, 

IATDNN+IAMSS-F, and IATDNN+IAMS. The best results are highlighted 

in bold. 

All-day Daytime Nighttime 

IATDNN 29.62% 30.30% 26.88% 

IATDNN + MSS-F 29.17% 29.92% 26.96% 

IATDNN + MSS 27.21% 27.56% 25.57% 

IATDNN + IAMSS-F 28.51% 28.98% 27.52% 

IATDNN + IAMSS 26.37% 27.29% 24.41% 
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etter detection performance using all four different multispectral

emantic segmentation models (except using IATDNN+MSS-F for night-

ime scenes). The underlying principle is that semantic segmentation

asks provide additional supervision to facilitate the training of more

ophisticated features to enable more robust detection [3] . Another im-

ortant observation is that the choice of fusion scheme (feature-stage or

ecision-stage) will significantly affect detection performance. Overall,

ecision-stage multispectral semantic segmentation models (MSS and

A-MSS) perform much better the feature-stage models (MSS-F and IA-

SS-F). One possible explanation of this phenomenon is that late stage

usion (e.g., decision-stage fusion) is a more suitable strategy to com-

ine high-level segmentation results. Finding the optimal segmentation

usion strategy to process multispectral data will be our future research.

ast but not least, the performance of semantic segmentation can be

urther boosted by considering the illumination condition of the scene.

utputs of sub-networks are adaptively fused through the illumination

eighting mechanism to generate more accurate segmentation results

nder various illumination conditions. Fig. 8 shows comparative seman-

ic segmentation results using four different MSS models. It is observed

hat semantic segmentation masks generated by IATDNN+IAMSS more

ccurately cover small targets and suppress the background noise. More

ccurate segmentation results can provide better supervision to train

ore distinctive human-related feature maps. 
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In Fig. 9 we visualize the feature map of TDNN, IATDNN, and

ATDNN+IAMSS to illustrate improvements gains achieved by different

llumination-aware modules. We find that IATDNN generate more dis-

inctive pedestrian features than TDNN by incorporating illumination

nformation into multiple illumination-aware sub-networks for better

earning of human-related feature maps. IATDNN+IAMSS can achieve

urther improvements through the segmentation infusion scheme in

hich illumination-aware semantic segmentation masks are used to su-

ervise the training of feature maps. 

.5. Comparison with the current state-of-the-art multispectral pedestrian 

etection methods 

Our proposed IATDNN and IATDNN+IAMSS are compared with

hree multispectral pedestrian detectors including ACF+T+THOG

17] , Halfway Fusion [19] and Fusion RPN+BDT [20] . For perfor-

ance comparison, we plot MR against FPPI (using log-log plots) by

arying the threshold on detection confidence. As shown in Fig. 10 ,

ur proposed IATDNN+IAMSS achieves the best detection accuracy

26.37% MR) in all-day scenes, which is 11% lower than the second

est performing solution Fusion RPN+BDT (29.68% MR). Furthermore,

ur proposed IATDNN, without incorporating the semantic segmen-

ation architecture, can also achieve performance comparable to the

tate-of-art method. We visualize some detection results of the Fusion

PN+BDT and our proposed IATDNN and IATDNN+IAMSS in Fig. 11 .

t is observed that IATDNN and IATDNN+IAMSS both generate more

obust detection results under varying illumination conditions, while

ATDNN+IAMSS further reduce the false positives through the super-

ision of illumination-aware semantic segmentation. As illustrated in

ig. 11 , IATDNN+IAMSS can even successfully predicted pedestrian in-

tances which are unlabeled in the KAIST testing dataset. These correctly

etected targets are considered as false positive detections. In our future

ork, we plan to restore these missed labels to facilitate better evalua-

ion of multispectral pedestrian detection approaches. 
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Fig. 9. Examples of multispectral pedestrian feature maps which are promoted by illumination-aware mechanism captured in (a) daytime and (b) nighttime scenes. 

The first two columns show the pictures of visible and thermal pedestrian instances respectively. The third to the fifth columns show the feature map visualizations 

generated from TDNN, IATDNN, and IATDNN+IAMSS respectively. It is noticed that the feature maps of multispectral pedestrian become more distinct by using our 

proposed illumination-aware modules (IATDNN and IAMSS). 

Fig. 10. Comparisons on the KAIST testing dataset under the reasonable setting during (a) all-day, (b) daytime, and (c) nighttime. It should be noted that legends 

indicate MR. 

Table 5 

Comprehensive comparison of IATDNN and 

IATDNN+IAMSS with the current state-of-the-art multi- 

spectral pedestrian detectors [19,20] . The computation 

efficiency is evaluated utilizing a single Titan X GPU. 

We execute each method for 100 times and compute the 

averaged runtime. It should be noted that DL represents 

deep learning and BF represents boosted forest [10] . 

MR(%) Runtime (s) Method 

Halfway Fusion [19] 37.19 0.40 DL 

Fusion RPN + BDT [20] 29.68 0.80 DL + BF 

TDNN 32.60 0.22 DL 

IATDNN 29.62 0.24 DL 

IATDNN + IAMSS 26.37 0.25 DL 
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We show the runtimes of IATDNN, IATDNN+IAMSS and state-of-

he-art methods [19,20] in Table 5 . We execute each method for 100

imes and compute the averaged runtime. It is noticed that the effi-

iency of IATDNN+IAMSS outperform the state-of-the-art DNN-based
155 
pproaches by a large margin (IATDNN+IAMSS 0.25s vs. Halfway Fu-

ion 0.40s vs. Fusion RPN+BDT 0.80s). The architecture of Halfway

usion includes an extra Fast R-CNN model [13] which significantly de-

reases the computational efficiency. Fusion RPN+BDT model utilizes

oosting trees for classification, which increases the runtime by almost

hree times. It worth mentioning that our proposed illumination-aware

etworks will significantly improve detection performance while only

ncur a small computational overhead (TDNN 0.22s vs. IATDNN 0.24s

s. IATDNN+IAMSS 0.25s). 

. Conclusion 

In our paper, we propose a novel multispectral pedestrian detector

hich is based on the joint learning of illumination-aware multispectral

edestrian detection and illumination-aware multispectral semantic

egmentation. The illumination information encoded in multispec-

ral images is utilized to accurately compute the illumination-aware

eights through our designed illumination fully connected neural

etwork (IFCNN). A novel illumination-aware weighting mechanism

s developed to combine the day and night illumination sub-networks
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Fig. 11. Comparison with the current state-of-the-art multispectral pedestrian detectors [19,20] . The first column shows the input multispectral images with the 

ground truth labels in the visible channel and the other columns show the detection results of Halfway Fusion, Fusion RPN+BDT, IATDNN, and IATDNN+IAMSS 

in the thermal channel. It should be noted that green bounding boxes (BBs) in solid line denote positive labels, green BBs in dashed line denote ignore ones, yellow 

BBs in solid line denote true positives, yellow BBs in dashed line denote ignore detections, and red BBs denote false positives. We can observe that our proposed 

model can generate more accurate detections in comparison with the current state-of-the-art multispectral pedestrian detectors [19,20] . Some detected pedestrian 

instances are not even labeled by human observers. Best viewed in color. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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illumination-aware pedestrian detection and illumination-aware

emantic segmentation) together. Experimental results show that

llumination-aware weighting mechanism provides an effective strategy

o improve multispectral pedestrian detector. Moreover, we design four

ifferent multispectral segmentation infusion networks and find that the

llumination-aware decision-stage multispectral semantic segmentation

IAMSS) generates the most reliable output. Experimental results on

he KAIST public multispectral pedestrian benchmark illustrate that our

roposed approach achieves more accurate detection results using less

untime in comparison with the current state-of-the-art multispectral

etectors. 
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