5,173 research outputs found

    LIRA: Lifelong Image Restoration from Unknown Blended Distortions

    Full text link
    Most existing image restoration networks are designed in a disposable way and catastrophically forget previously learned distortions when trained on a new distortion removal task. To alleviate this problem, we raise the novel lifelong image restoration problem for blended distortions. We first design a base fork-join model in which multiple pre-trained expert models specializing in individual distortion removal task work cooperatively and adaptively to handle blended distortions. When the input is degraded by a new distortion, inspired by adult neurogenesis in human memory system, we develop a neural growing strategy where the previously trained model can incorporate a new expert branch and continually accumulate new knowledge without interfering with learned knowledge. Experimental results show that the proposed approach can not only achieve state-of-the-art performance on blended distortions removal tasks in both PSNR/SSIM metrics, but also maintain old expertise while learning new restoration tasks.Comment: ECCV2020 accepte

    Modular Deep Learning

    Full text link
    Transfer learning has recently become the dominant paradigm of machine learning. Pre-trained models fine-tuned for downstream tasks achieve better performance with fewer labelled examples. Nonetheless, it remains unclear how to develop models that specialise towards multiple tasks without incurring negative interference and that generalise systematically to non-identically distributed tasks. Modular deep learning has emerged as a promising solution to these challenges. In this framework, units of computation are often implemented as autonomous parameter-efficient modules. Information is conditionally routed to a subset of modules and subsequently aggregated. These properties enable positive transfer and systematic generalisation by separating computation from routing and updating modules locally. We offer a survey of modular architectures, providing a unified view over several threads of research that evolved independently in the scientific literature. Moreover, we explore various additional purposes of modularity, including scaling language models, causal inference, programme induction, and planning in reinforcement learning. Finally, we report various concrete applications where modularity has been successfully deployed such as cross-lingual and cross-modal knowledge transfer. Related talks and projects to this survey, are available at https://www.modulardeeplearning.com/

    Advancing Transformer Architecture in Long-Context Large Language Models: A Comprehensive Survey

    Full text link
    Transformer-based Large Language Models (LLMs) have been applied in diverse areas such as knowledge bases, human interfaces, and dynamic agents, and marking a stride towards achieving Artificial General Intelligence (AGI). However, current LLMs are predominantly pretrained on short text snippets, which compromises their effectiveness in processing the long-context prompts that are frequently encountered in practical scenarios. This article offers a comprehensive survey of the recent advancement in Transformer-based LLM architectures aimed at enhancing the long-context capabilities of LLMs throughout the entire model lifecycle, from pre-training through to inference. We first delineate and analyze the problems of handling long-context input and output with the current Transformer-based models. We then provide a taxonomy and the landscape of upgrades on Transformer architecture to solve these problems. Afterwards, we provide an investigation on wildly used evaluation necessities tailored for long-context LLMs, including datasets, metrics, and baseline models, as well as optimization toolkits such as libraries, frameworks, and compilers to boost the efficacy of LLMs across different stages in runtime. Finally, we discuss the challenges and potential avenues for future research. A curated repository of relevant literature, continuously updated, is available at https://github.com/Strivin0311/long-llms-learning.Comment: 40 pages, 3 figures, 4 table

    Multi-scale convolutional neural network for automated AMD classification using retinal OCT images

    Get PDF
    BACKGROUND AND OBJECTIVE: Age-related macular degeneration (AMD) is the most common cause of blindness in developed countries, especially in people over 60 years of age. The workload of specialists and the healthcare system in this field has increased in recent years mainly due to three reasons: 1) increased use of retinal optical coherence tomography (OCT) imaging technique, 2) prevalence of population aging worldwide, and 3) chronic nature of AMD. Recent advancements in the field of deep learning have provided a unique opportunity for the development of fully automated diagnosis frameworks. Considering the presence of AMD-related retinal pathologies in varying sizes in OCT images, our objective was to propose a multi-scale convolutional neural network (CNN) that can capture inter-scale variations and improve performance using a feature fusion strategy across convolutional blocks. METHODS: Our proposed method introduces a multi-scale CNN based on the feature pyramid network (FPN) structure. This method is used for the reliable diagnosis of normal and two common clinical characteristics of dry and wet AMD, namely drusen and choroidal neovascularization (CNV). The proposed method is evaluated on the national dataset gathered at Hospital (NEH) for this study, consisting of 12649 retinal OCT images from 441 patients, and the UCSD public dataset, consisting of 108312 OCT images from 4686 patients. RESULTS: Experimental results show the superior performance of our proposed multi-scale structure over several well-known OCT classification frameworks. This feature combination strategy has proved to be effective on all tested backbone models, with improvements ranging from 0.4% to 3.3%. In addition, gradual learning has proved to be effective in improving performance in two consecutive stages. In the first stage, the performance was boosted from 87.2%±2.5% to 92.0%±1.6% using pre-trained ImageNet weights. In the second stage, another performance boost from 92.0%±1.6% to 93.4%±1.4% was observed as a result of fine-tuning the previous model on the UCSD dataset. Lastly, generating heatmaps provided additional proof for the effectiveness of our multi-scale structure, enabling the detection of retinal pathologies appearing in different sizes. CONCLUSION: The promising quantitative results of the proposed architecture, along with qualitative evaluations through generating heatmaps, prove the suitability of the proposed method to be used as a screening tool in healthcare centers assisting ophthalmologists in making better diagnostic decisions

    Mapping (Dis-)Information Flow about the MH17 Plane Crash

    Get PDF
    Digital media enables not only fast sharing of information, but also disinformation. One prominent case of an event leading to circulation of disinformation on social media is the MH17 plane crash. Studies analysing the spread of information about this event on Twitter have focused on small, manually annotated datasets, or used proxys for data annotation. In this work, we examine to what extent text classifiers can be used to label data for subsequent content analysis, in particular we focus on predicting pro-Russian and pro-Ukrainian Twitter content related to the MH17 plane crash. Even though we find that a neural classifier improves over a hashtag based baseline, labeling pro-Russian and pro-Ukrainian content with high precision remains a challenging problem. We provide an error analysis underlining the difficulty of the task and identify factors that might help improve classification in future work. Finally, we show how the classifier can facilitate the annotation task for human annotators

    Machine Learning in Robotic Ultrasound Imaging: Challenges and Perspectives

    Full text link
    This article reviews the recent advances in intelligent robotic ultrasound (US) imaging systems. We commence by presenting the commonly employed robotic mechanisms and control techniques in robotic US imaging, along with their clinical applications. Subsequently, we focus on the deployment of machine learning techniques in the development of robotic sonographers, emphasizing crucial developments aimed at enhancing the intelligence of these systems. The methods for achieving autonomous action reasoning are categorized into two sets of approaches: those relying on implicit environmental data interpretation and those using explicit interpretation. Throughout this exploration, we also discuss practical challenges, including those related to the scarcity of medical data, the need for a deeper understanding of the physical aspects involved, and effective data representation approaches. Moreover, we conclude by highlighting the open problems in the field and analyzing different possible perspectives on how the community could move forward in this research area.Comment: Accepted by Annual Review of Control, Robotics, and Autonomous System
    corecore