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A B S T R A C T   

Background and objective: Age-related macular degeneration (AMD) is the most common cause of blindness in 
developed countries, especially in people over 60 years of age. The workload of specialists and the healthcare 
system in this field has increased in recent years mainly due to three reasons: 1) increased use of retinal optical 
coherence tomography (OCT) imaging technique, 2) prevalence of population aging worldwide, and 3) chronic 
nature of AMD. Recent advancements in the field of deep learning have provided a unique opportunity for the 
development of fully automated diagnosis frameworks. Considering the presence of AMD-related retinal pa
thologies in varying sizes in OCT images, our objective was to propose a multi-scale convolutional neural 
network (CNN) that can capture inter-scale variations and improve performance using a feature fusion strategy 
across convolutional blocks. 
Methods: Our proposed method introduces a multi-scale CNN based on the feature pyramid network (FPN) 
structure. This method is used for the reliable diagnosis of normal and two common clinical characteristics of dry 
and wet AMD, namely drusen and choroidal neovascularization (CNV). The proposed method is evaluated on the 
national dataset gathered at Hospital (NEH) for this study, consisting of 12649 retinal OCT images from 441 
patients, and the UCSD public dataset, consisting of 108312 OCT images from 4686 patients. 
Results: Experimental results show the superior performance of our proposed multi-scale structure over several 
well-known OCT classification frameworks. This feature combination strategy has proved to be effective on all 
tested backbone models, with improvements ranging from 0.4% to 3.3%. In addition, gradual learning has 
proved to be effective in improving performance in two consecutive stages. In the first stage, the performance 
was boosted from 87.2% ± 2.5% to 92.0% ± 1.6% using pre-trained ImageNet weights. In the second stage, 
another performance boost from 92.0% ± 1.6% to 93.4% ± 1.4% was observed as a result of fine-tuning the 
previous model on the UCSD dataset. Lastly, generating heatmaps provided additional proof for the effectiveness 
of our multi-scale structure, enabling the detection of retinal pathologies appearing in different sizes. 
Conclusion: The promising quantitative results of the proposed architecture, along with qualitative evaluations 
through generating heatmaps, prove the suitability of the proposed method to be used as a screening tool in 
healthcare centers assisting ophthalmologists in making better diagnostic decisions.   

1. Introduction 

Age-related Macular Degeneration (AMD) is a highly prevalent 
retinal disorder that accounts for 8.7% of blindness globally [1]. It is the 

most frequent cause of blindness in developed countries, especially in 
people over 60, and is labeled a "priority eye disease" by the WHO [1,2]. 
AMD cases fall into two general categories: dry and wet. Dry AMD ac
counts for 80–90% of cases. The common clinical characteristic of dry 
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AMD is the presence of drusen, which are deposits of extracellular ma
terial that build up between the retinal pigment epithelium (RPE) and 
inner collagenous zone of Bruch’s membrane [3,4]. These deposits 
accumulate over time and lead to the damage of the RPE and subsequent 
loss of photoreceptor cells [5,6]. In 10–20% of cases, patients with dry 
AMD develop wet AMD, in which normal blood vessels grow into the 
retina and leak fluid, making the retina wet. Technically, this is called 
CNV or choroidal neovascularization, which leads to significant visual 
impairment. Fig. 1 illustrates the OCT B-scans for normal, drusen, and 
CNV cases. 

The introduction of anti-angiogenesis therapy has fortunately 
brought about significant advancements in the management of exuda
tive or so-called wet AMD, and intravitreal injection of anti-vascular 
endothelial growth factor (anti-VEGF) drugs is currently considered to 
be the optimal treatment for CNV [1,7]. However, these treatments are 
costly and not available in all countries [1]. Moreover, any improvement 
is accompanied by long-term monthly intravitreal injections and un
certainty about the therapy duration and likely recurrence of CNV [7]. 
Thus, patient screening and early detection of AMD cases with effective 
diagnostic tools are critical. 

Optical coherence tomography (OCT) has become the most 
commonly used imaging modality in ophthalmology, with more than 5 
million OCTs performed in 2014 in the US Medicare population [8]. OCT 
is a non-invasive imaging technique that provides cross-sectional images 
of the macula or optic nerve head using low-coherence light [9]. 
Considering its non-invasiveness and ease of imaging acquisition, OCT is 
highly preferred by ophthalmologists for the assessment of retinal pa
thologies, e.g., AMD [5]. However, precise examination of multiple OCT 
cross-sections for each patient is a time-consuming and demanding task 

for ophthalmologists. Moreover, the chronic nature of AMD further in
creases the burden on ophthalmologists and healthcare centers. Thus, 
the presence of an automated computer-aided diagnosis (CAD)-based 
screening tool could help in prioritizing patients with respect to their 
condition and reducing this burden. 

Therefore, in this study, we propose a novel multi-scale CNN with an 
FPN-based feature fusion strategy. The proposed model takes advantage 
of multi-scale receptive fields, enabling more accurate detection of 
retinal pathologies that appear in varying scales in OCT images. This 
method enables end-to-end training of the multi-scale model with a 
single CNN using a simplistic design and eliminates the need to perform 
preprocessing on the input data. Our experimental results on the NEH 
dataset published in this study and the UCSD dataset demonstrate the 
superior performance of our proposed methodology against several 
state-of-the-art retinal OCT classification frameworks. The resulting 
framework can also be used as a screening tool to prioritize cases 
depending on their condition and act as a second pair of eyes for oph
thalmologists to better detect AMD-related retinal pathologies. 

In the following section, we discuss the related literature on auto
mated classification of retinal pathologies and the motivation for our 
proposed model. 

2. Related works 

Numerous computerized algorithms for automated classification of 
retinal pathologies have been developed during recent years for pre
processing [10–12], classification [3,5,13–28], and segmentation 
[29–36] of OCT images. This study is focused on the classification of 
retinal pathologies, and in this category, studies are divided into two 

Fig. 1. Example OCT B-scans from the Noor Eye Hospital (NEH) dataset. (A) Normal case, (B) Drusen case, (C) CNV case. Red arrows indicate the affected area in the 
B-scan. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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main branches: feature-based and deep learning-based methods. This 
section discusses the related literature in these two branches and reveals 
the motivation behind our proposed classification methodology. 

2.1. Feature-based methods 

Traditional machine learning approaches for semi/fully automatic 
classification of OCT images consist of three main blocks: preprocessing, 
feature extraction, and classifier design [37]. The preprocessing block 
(e.g., image denoising [11] and retinal flattening [12]) allows for the 
removal of unwanted or unnecessary information from the raw input 
data and allows the model to extract meaningful information in the 
following stage. Then, feature descriptors (e.g., histogram of oriented 
gradients (HOG) [21,23], linear binary patterns (LBP) [27], and 
scale-invariant feature transform (SIFT) [12]) are employed, allowing 
manual extraction of features. In the end, the extracted features are fed 
into a classifier (e.g., random forest algorithm [22], Bayesian classifier 
[23], and support vector machine [21,27]) to finalize the classification 
process. Table 1 summarizes the previous work conducted for 
feature-based retinal OCT classification. 

Although machine learning approaches have proved to achieve 
promising results, they come with several limitations. First, manual 
extraction of features is a time-consuming task requiring an expert’s 
skill, making it inefficient to collect a large and comprehensive database. 
Furthermore, expert interpretations might be different, leading to re
sults that are not acceptable by other experts. This would result in 
models which are not generalizable to new databases. 

2.2. Deep learning-based methods 

Deep learning (DL), a subfield of artificial intelligence (AI), has 
recently gained significant interest in medicine and healthcare and has 
been primarily applied to medical image analysis [38]. DL methods are 
based on representation learning, where a multi-layer neural network 
automatically discovers the representations needed for the classification 
task without any manual feature engineering, replacing the multi-block 
approach of traditional methods [38,39]. Convolutional neural network 
(CNN) architectures have shown promising results in classifying retinal 
pathologies using OCT images. Table 2 summarizes the previous works 
conducted for automated retinal OCT classification. 

This study aimed to expand the current body of work on multi-scale 
convolutional neural networks. Compared to the reviewed works sum
marized in Table 2, the main contributions of this study are: (a) feature 
combination among CNN blocks using FPN structure to take advantage 
of multi-scale receptive fields, enabling more accurate detection of pa
thologies appearing in different scales, (b) enabling end-to-end training 
with multiple scales, eliminating the need to use image pyramids and 
reducing computational complexity, (c) showing the robustness of the 
algorithm and improvement in accuracy using four famous backbone 
structures (VGG, ResNet, DenseNet, EfficientNet), (d) providing quali
tative proof (heatmaps) supporting the usefulness of the multi-scale 
structure, and (e) further performance enhancement using a two- 
staged (gradual) learning strategy. 

The rest of the sections are organized as follows: Section 3 describes 
the collected database and the proposed methodology, Section 4 pre
sents the results and discussions, and Section 5 concludes this paper. 

3. Materials and methods 

This section discusses the details of the databases used in this study 
and describes the proposed multi-scale CNN framework. 

3.1. Database 

The proposed method was evaluated on two separate databases. For 
the first database, our study used anonymized OCT images collected by 
the Heidelberg SD-OCT imaging system at Noor Eye Hospital (NEH), 
Tehran, Iran. There were no marks/features and no patient identifiers in 
the images. For the second database, our study used the public re
pository provided by the University of Californian San Diego (UCSD) 
[20]. Table 3 shows the details of the first and second databases. 

For the NEH database, all the OCT B-scans are labeled by a retinal 
specialist. The inclusion criteria for patient selection are having more 
than 50 years of age, absence of any other retinal pathology in the pa
tient’s OCT B-scans, and good image quality (Q ≥ 201). For training and 
comparing purposes, the worst-case condition B-scans for each volume 

Table 1 
Summary of previous works using feature-based methods.  

Authors Methods Dataset Performance Measures Notes 

Albarrak 
et al. [23] 

Combine concepts of volume decomposition 
and LBP for feature extraction and use 
Bayesian classifier on the generated feature 
vectors 

Private dataset of 
140 3D OCT 
volumes 

Accuracy: 91.4% Combination of image decomposition and LBP 
histograms helped to form a more accurate feature 
descriptor for classification purposes. 

Sensitivity: 92.4% 
Specificity: 90.5% 

Srinivasan 
et al. [21] 

Proposed an algorithm that uses the multi- 
scale histogram of gradient descriptors as 
feature extractors and support vector 
machine as the classifier 

Duke dataset [21] Achieved an accuracy of 95.56% for 
patient-wise classification of normal, 
AMD, and DME cases 

The patient is classified as normal/AMD/DME if 
33% or more of the images in a volume are classified 
as those cases. This threshold is selected 
experimentally and might not be the best choice 
among different datasets. 

Lemaitre 
et al. [27] 

A classification framework with five 
distinctive steps was proposed 

SERI private 
dataset [27] 

The best settings achieved a 
sensitivity of 81.2% and specificity of 
93.7% 

The five steps included preprocessing (non-local 
means, flattening, alignment), feature detection 
(LBP, LBP-TOP), mapping (global, local), feature 
representation (histogram bag-of-words), and 
classification (random forest, k-NN, RBF-SVM, 
logistic regression, and gradient boosting). 

Sun et al. 
[12] 

A classification framework based on sparse 
coding and dictionary learning was 
proposed. 

Duke dataset [21] 
+ Private dataset 

Achieved a patient-wise accuracy of 
97.78% on the Duke dataset 

A volume was appointed to a specific class (AMD, 
DME, or normal) by the label for the majority of the 
images. The average preprocessing time for a single 
OCT scan was 9.2 s which can be a limitation in real- 
time settings. 

Venhuizen 
et al. [22] 

A machine learning algorithm for 
automated grading of AMD severity stages 
was developed 

European Genetic 
Database 
(EUGENDA) 

The system achieved an AUROC of 
0.980 with a sensitivity of 98.2% and 
specificity of 91.2% for high-risk 
AMD detection. 

The algorithm showed similar performance as 
human observers who achieved sensitivities of 
97.0% and 99.4% at specificities of 89.7% and 
87.2%.  

1 Measured by the Heidelberg SD-OCT imaging system and provided in pa
tients images. 
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were kept (i.e., if a patient was detected as a CNV case, only CNV- 
appearing B-scans were included for the training procedure), and 
other B-scans were eliminated from the database. Thus, among 16822 
overall OCT B-scans, 12649 are used for training and testing. To enable 
future research on the same topic, we made the dataset available at: htt 
ps://data.mendeley.com/datasets/8kt969dhx6/1. 

The UCSD database consists of a train and a test set, belonging to four 
categories of CNV, DME, drusen, and normal. The training set contains 
108312 retinal OCT images (CNV: 37206, DME: 11349, drusen: 8617, 
normal: 51140), and the testing set contains 1000 retinal OCT images 
(250 from each class). This dataset is available at: https://data.men 
deley.com/datasets/rscbjbr9sj. 

3.2. The proposed method 

One major challenge with medical images is that regions of interest 
(ROIs) appear in varying scales. Thus, different-sized receptive fields 
would be needed in order to detect retinal pathologies. To achieve such 
an architecture, we propose a multi-scale CNN structure based on the 
FPN design [52]. FPN’s main applications are in object detection and 

semantic segmentation. However, we have modified their structure so 
that we would be able to take advantage of their multi-scale architecture 
in our classification problem. 

In FPN, earlier feature maps in a convolutional model have high 
resolution and weak semantics. On the other hand, later feature maps 
have low resolution and strong semantics. The goal of using an FPN- 
based structure is to leverage the pyramidal shape of a CNN’s feature 
hierarchy in order to create a model with strong semantics at all scales. 
Using FPN-based architecture to achieve this goal, we merged high- 
dimensional, semantically weak feature maps through top-down path
ways and lateral connections with low-dimensional, semantically strong 
ones. The resulting model has strong semantics at all scales and is 
capable of extracting features in different sizes. Extracting multi-scale 
feature maps and merging them using a single CNN reduces computa
tional and memory costs. 

To summarize, the benefits of having a multi-scale CNN based on 
FPN structure are two-fold:  

1. Unlike featurized image pyramids where multiple input images with 
varying scales are utilized, our proposed architecture works with a 
single input image, reducing computational costs.  

2. Unlike several previous models that used multiple CNN models 
running in parallel, the proposed multi-scale structure uses a single 
CNN to extract different-sized features and merges them to reach the 
overall classification result. 

3.3. Multi-scale CNN structure 

This Subsection provides a detailed description of the proposed 
structure. The multi-scale structure can be used with any off-the-shelf 
CNN architecture (VGG, ResNet, DenseNet, etc.) as the backbone. In 
this paper, we used VGG16 as the backbone network as it had the best 
performance when combined with the FPN structure and named it FPN- 
VGG16. Fig. 2 illustrates the structure of this model. 

The FPN-VGG16 structure is composed of three main components: 

(a) encoder, (b) feature fusion using FPN architecture, and (c) classifier. 
The encoder part is responsible for creating the pyramidal feature hi
erarchy and could be selected from a wide variety of famous deep 
learning networks, such as VGGNets [53], ResNets [54], DenseNets 
[55], EfficientNets [56], etc. The feature fusion section is based on the 
FPN structure. In this section, the output feature maps at different scales 
i (i ∈ {1,2,3, 4,…} dependant on the number of feature scales with i = 1 
starting from earlier blocks going to i = n corresponding to the last 
block) are first convolved with a 1 × 1 filter of size 256 to equalize the 
effect of each scale and enable addition operation with feature maps 
from the previous (finer) scale. Then, the resulting feature maps are 
merged with the ones at scale i+1 through addition. Let Xi be the output 
feature map with size (x, x, 256) that gone through convolution with a 
1 × 1 filter. To enable addition operation of a coarser-resolution con

volutional block of size 
(

x /2, x /2,256
)

with Xi, Xi+1(
x /

2,x /

2,256
) need to be 

upsampled (named as X̂
i+1
(x,x,256)). The last convolutional block would be 

transferred to the next layer without any change. This can be formulated 
as:  

Where Yi is the output from the addition operation at block i. Two 3 × 3 
convolutional layers are appended at the end of the feature fusion stage 
to extract the semantically strong scale-representative feature maps. 
Then, global average pooling layers were used to convert the extracted 
feature maps of size (x, x,256) to a feature vector of size 256 [57]. One 
major advantage of the global average pooling layer is that no param
eters need to be optimized; thus, no overfitting will occur because of 
using this layer. Also, as explained in Ref. [57], the global average 
pooling makes the network more robust to spatial translations of the 
input as it sums out the spatial information. To form the final feature 
vector, we concatenate features from all scales, which gives us a 
1280-unit feature vector. Then, this vector is connected to a dense layer 
with a size of 512 through a fully connected layer. To reduce the model’s 
overfitting, we used a dropout layer with a value of 0.5. In the end, a 
softmax output layer gives the probability of classes for each input 
image. The number of output neurons was dependent on the number of 
classes in each dataset (three neurons for the NEH dataset with classes of 
normal, drusen, and CNV and four neurons for the UCSD dataset with 
classes of normal, drusen, AMD, and DME). 

3.4. Experimental setup 

First, image intensities are normalized with a mean of zero and a 
standard deviation of one. Then, to reduce the computational load, all 
images are resized to 224× 224. To improve variability in data and 
generalizability of the proposed model, we used data augmentation 
techniques, such as random rotation and shearing, brightness change, 
zoom change, and horizontal flipping. Table 4 gives the specifications of 
our data augmentation strategy. 

In this study, five-fold cross-validation at the patient level was uti
lized as an unbiased estimator to evaluate and compare the model’s 
performance against baselines and previous studies. This method splits 
the patient data into five folds, trains the model on four of those subsets, 
and tests it on the remaining subset. This process is repeated five times, 

Yi =

⎧
⎪⎨

⎪⎩

Xi
(x,x,256) + Upsampled

⎛

⎝Xi+1(
x

/

2,x

/

2,256

)

⎞

⎠ = Xi
(x,x,256) + X̂

i+1
(x,x,256) , i ∈ {1, 2,…, n − 1}

Xi
(x,x,256) , i ∈ {n}
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Table 2 
Summary of previous works using deep learning-based methods.  

Authors Methods Dataset Performance Measures Notes 

Lee et al. 
[40] 

A modified version of the VGG16 CNN 
was used for the classification of 
normal and AMD cases. 

Private dataset of 
48312 normal and 
52690 AMD macular 
OCT scans 

Accuracy of 87.63% on the OCT level, 
88.98% in the volume level, and 93.45% in 
the patient level 

This study was the first to demonstrate the 
ability of deep learning models to distinguish 
AMD from normal OCT images. 

Kermany 
et al. [20] 

A transfer learning algorithm based on 
InceptionV3 architecture to classify 
CNV, DME, drusen, and normal cases 

UCSD dataset [20] Accuracy: 96.6% This study demonstrated the competitive 
performance of the transfer learning algorithm, 
which eliminates the need for a highly 
specialized deep learning model and a dataset 
of millions of images. 

Sensitivity: 97.8% 
Specificity: 97.4% 

Li et al. [41] A deep transfer learning method to fine- 
tune the VGG16 network pre-trained on 
the ImageNet database 

UCSD dataset [20] Accuracy: 98.6% A similar study to the one conducted by 
Kermany et al. [20], with the difference of using 
VGG16 network instead of InceptionV3 for 
transfer learning. 

Sensitivity: 97.8% 
Specificity: 99.4% 

Kaymak 
et al. [42] 

The original AlexNet was trained for 
the classification of retinal OCT 
pathologies. 

UCSD dataset [20] Accuracy: 97.1% Due to the availability of a large OCT dataset 
(>100 k images), AlexNet has outperformed the 
transfer learning method proposed by Kermany 
et al. [20]. 

Sensitivity: 99.6% 
Specificity: 98.4% 

Serener 
et al. [43] 

AlexNet and ResNet18 models were 
compared for the classification of dry 
and wet AMD 

UCSD dataset [20] (ResNet18- Dry AMD) ResNet18 model outperformed the AlexNet 
model on both classification tasks. Further 
analysis demonstrated a more accurate 
classification of dry AMD than wet AMD. 

Accuracy: 99.5% 
Sensitivity: 98.0% 
Specificity: 100.0% 
(ResNet18- Wet AMD) 
Accuracy: 98.8% 
Sensitivity: 95.6% 
Specificity: 99.9% 

Hwang 
et al. [7] 

A deep transfer learning method for 
fine tuning three different architectures 
(VGG16, InceptionV3, ResNet50) for 
the classification of retinal pathologies. 

Private dataset +
UCSD dataset [20] 

Reported accuracy on the UCSD dataset was 
91.20%, 96.93%, and 95.87% for the 
VGG16, InceptionV3, and ResNet50 model 
for the classification of normal, dry AMD, 
and wet AMD cases 

InceptionV3 model outperformed VGG16 and 
ResNet50 for both datasets. 

Fang et al. 
[44] 
(JVCIR) 

Iterative fusion convolutional neural 
network (IFCNN) method 

2nd version of the 
UCSD dataset [20] +
MURA dataset 

Reported an overall accuracy of 87.3% using 
five-fold cross-validation on the UCSD 
dataset 

The proposed IFCNN method exploits the 
information among different convolutional 
layers through an iterative layer fusion 
strategy. 

Huang et al. 
[17] 

Layer guided convolutional neural 
network (LGCNN) 

2nd version of the 
UCSD dataset [20] +
HUCM dataset 

Reported an overall accuracy of 88.4% using 
five-fold cross-validation on the UCSD 
dataset 

Retinal layer segmentation maps and two 
lesion-related layer information were first 
extracted using ReLayNet and then LGCNN was 
employed for integrating the extracted 
information for classification. 

Rasti et al. 
[3] 

A novel methodology based on a multi- 
scale convolutional mixture of expert 
(MCME) ensemble model 

NEH dataset [3] Reported a precision of 99.36%, recall of 
99.36%, and f1-score of 99.34% on a three- 
class classification problem (normal, AMD, 
DME) 

The mathematical model of the presented 
methodology was coupled with a new cost 
function based on the addition of a cross- 
correlation penalty term. The best accuracy is 
dependent on manual tuning of the loss 
function. Using multiple CNNs increases 
inference time and computational complexity. 

Das et al. 
[45] 

A multi-scale deep feature fusion 
(MDFF) approach using CNNs 

2nd version of the 
UCSD dataset [20] 

Accuracy: 99.6% Fusion of features from multiple scales can 
capture the inter-scale variations introducing 
complementary information to the classifier. In 
addition, no additional tuning of 
hyperparameters is needed (a limitation of the 
study conducted by Rasti et al. [3]). Using 
multiple CNNs increases inference time and 
computational complexity. 

Sensitivity: 99.6% 
Specificity: 99.87% 

Thomas 
et al. [46] 

a multi-scale CNN structure UCSD dataset [20] Weighted average accuracy of 99.73% for 
binary classification of normal vs. AMD 
cases 

The multi-scale feature extraction architecture 
helps the network to create local structures of 
various filter sizes. 

Fang et al. 
[16] 
(TMI) 

Lesion-aware convolutional neural 
network (LACNN) that incorporates 
attention maps from a lesion detection 
network (LDN) 

UCSD dataset [20] Reported an overall accuracy of 90.1% using 
five-fold cross-validation on the UCSD 
dataset 

Demonstrated that the detected macular lesion 
information can guide the network to pay more 
attention to discriminative features and ignore 
insignificant information. Usage of two 
separate networks (LDN + LACNN) increases 
computational complexity. 

Das et al. 
[48] 

B-scan attentive convolutional neural 
network (BACNN) 

DUIA dataset [47] +
NEH dataset [3] 

Reported an overall accuracy of 90.1% on 
the NEH dataset and 97.1% on the DUIA 
dataset 

The proposed methodology uses a self-attention 
mechanism to automatically assign appropriate 
weights to the clinically informative 
(pathological) B-scans 

Hassan 
et al. [51] 

Deep retinal analysis and grading 
framework (RAG-FW) 

Duke1 [47], Duke2 
[49], Duke3 [21], 
BIOMISA [50], and 
UCSD dataset [20] 

Accuracy: 98.6% The proposed method is a hybrid convolutional 
neural network (RAG-FW), employing RAG-Net 
that contains a segmentation and a 
classification unit for retinal lesion extraction 
and lesion-influenced grading of retinal 
diseases. 

Sensitivity: 98.27% 
Specificity: 99.6%  
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with a different subset reserved for testing each time. In each run, 20% 
of the data within the training set is selected for validation and opti
mization, helping the model achieve the best generalization perfor
mance and preventing the overfitting problem. After five runs, every 
patient is selected exactly once as the testing set. 

All the networks were trained end-to-end using an Adam optimizer 
and a batch size of 16. Weighted categorical cross-entropy (CCE) loss 
function was used to compensate for the imbalanced data distribution in 
both datasets. Table 5 shows the class weights for both datasets. 
Learning rate decay was used as a strategy to help the model achieve the 
best performance or least loss value during optimization. This strategy 
starts training the model with a large learning rate and slowly decays it 
until a local minimum is obtained. Early stopping was another strategy 
used to regularize the deep learning model. This strategy monitors the 
performance of the model after each epoch during training on a vali
dation set and terminates the training process when no decline in loss 
value is observed. In this study, we started with a learning of 1e-4 and 
reduced it by half after each epoch that validation loss did not improve 
(decrease). Early stopping was set to ten epochs in this study, so the 
training process terminates if validation loss does not decrease after ten 
consecutive epochs. 

4. Results and discussion 

In this section, we discuss the performance measures used in this 
study and perform several evaluations. First, we compare four different 
versions of our proposed method (four different backbones including 
VGG16 [53], ResNet50 [54], DenseNet121 [55], and EfficientNetB0 
[56]) against feature-based methods (HOG + SVM), off-the-shelf CNNs, 
and several recently-developed methods using two separate public 
datasets (NEH dataset released in this study and UCSD dataset). Second, 
we study the optimum number of feature maps to be merged together in 
order to achieve the best results. Third, we analyze the effect of gradual 
learning on improving the model’s evaluation metrics. Fourth and last, 
Class Activation Maps (CAMs) are generated using the Grad-CAM 
method to visualize the key features used by the model for dis
tinguishing AMD and normal cases. 

Table 3 
Specifications for the Noor Eye Hospital (NEH) database.   

Class # 
Patients 

# Eyes (OD, 
OS) 

# OCT B- 
Scans 

NEH 
Database 

Normal 120 187 (95, 92) 5667 
Drusen 160 194 (112, 

82) 
3742 

CNV 161 173 (83, 90) 3240 
Total 441 554 (290, 

264) 
12649 

Total (Before 
Elimination) 

441 554 (290, 
264) 

16822 

UCSD 
Dataset 

Normal 3548 NA 51140 
Drusen 713 NA 8617 
CNV 791 NA 37206 
DME 709 NA 11349 
Total 4686 NA 108312  

Fig. 2. FPN-VGG16 model structure. The model consists of three main parts: (a) encoder, (b) feature fusion using FPN architecture, and (c) classifier. The model’s 
encoder section encodes the input image into several feature blocks. The FPN-based feature fusion section takes the input from the encoder’s output and fuses them to 
improve the semantic representation of the model. The classifier is responsible for providing the class probabilities for each input image. 

Table 4 
Specifications of the data augmentation used in this study.  

Augmentation Type Value 

Rotation range ±15 degrees 
Shear range ±5 degrees 
Brightness range ±20% 
Zoom range ±20% 
Horizontal flip True  

Table 5 
Class weights for the Noor Eye Hospital and UCSD datasets.  

Dataset Classes # B-Scans Class Weights 

Noor Eye Hospital Dataset CNV 3240 0.26 
Drusen 3742 0.29 
Normal 5667 0.45 
Total 12649 1 

UCSD Dataset CNV 37206 0.34 
DME 11349 0.11 
Drusen 8617 0.08 
Normal 51140 0.47 
Total 108312 1  
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4.1. Performance measures 

Classification performance of the evaluated models are obtained 
from the 3-class, and 4-class confusion matrix for the NEH and the UCSD 
dataset, respectively. The number of model parameters, runtime per 
epoch, loss function value, sensitivity, specificity, and accuracy are used 
for performance analysis on the first dataset (Table 6). For the second 
dataset, sensitivity, specificity, accuracy, and presence of a preprocess
ing step are compared (Table 7). Sensitivity and specificity measure the 
proportion of positives and negatives that are correctly classified, and 
accuracy is the percentage of correct predictions of the model. 

In this section, we evaluated our proposed architecture performance 
using two separate datasets. For the first comparison, we implemented 
our proposed multi-scale CNN with different backbones (VGG, ResNet, 
DenseNet, and EfficientNet) and compared them against their corre
sponding base models, a feature-based model based on HOG feature 
extractor and SVM classifier, and several recently-proposed retinal OCT 
classification frameworks including one with a multi-scale CNN archi
tecture [46]. Table 6 shows the average performance of all models in a 
five-fold cross-validation setup. 

As can be observed, using the FPN structure to create a multi-scale 
CNN results in a performance boost for all the tested backbones. The 
performance boost varies from 0.4% (from 91.6% ± 2.2% to 92.0%±

1.6%, for the VGG16 model) to 3.3% (from 86.8% ± 2.0% to 90.1%±

2.9%, for the ResNet50 model) in terms of accuracy. Also, all the pro
posed multi-scale CNN architectures achieve superior performance 
against feature-based (HOG + SVM), transfer learning-based method 
implemented by Kermany et al. [20], AlexNet model implemented by 
Kaymak et al. [42], and a multi-scale CNN structure proposed by 
Thomas et al. [46]. 

For the second comparison, the best-performing multi-scale CNN 
architecture from the last step (FPN-VGG16) was compared against off- 
the-shelf CNNs and multiple well-known retinal OCT classification 
frameworks that reported accuracies on the UCSD dataset [20]. Table 7 
shows the overall performance for the 4-class classification problem 
using the UCSD dataset for four types of studies. In the first study, the 
FPN-VGG16 was compared against three off-the-shelf-CNNs using 1000 

test images of the UCSD dataset (third/last version). In the second study, 
the FPN-VGG16 was compared against multiple previous studies that 
reported results on the same test set of the UCSD dataset. In the third 
study, the FPN-VGG16 was compared against a study conducted by Das 
et al. [45] that was tested on the second version of the UCSD dataset. For 
this comparison, the FPN-VGG16 model was trained on the same dataset 
as in Ref. [45] and tested on the same images. In the fourth and last 
study, the FPN-VGG16 model was compared against two studies that 
conducted five-fold cross-validation on training images of the UCSD 
dataset. For this comparison, the FPN-VGG16 model was trained using 
five-fold cross-validation on the UCSD training dataset. 

Table 7 shows the results for four types of studies discussed above. 
The results of the first study indicate the superior performance of the 
proposed FPN-VGG16 model against off-the-shelf CNN models, which 
emphasizes the effectiveness of having a multi-scale structure through 
feature combination. The second study demonstrates the superior per
formance of our model against several previous studies on retinal OCT 
classification [7,20,42]. However, the model proposed by Hassan et al. 
[51] shows slightly better results in terms of overall accuracy (up by 
0.2% compared to our model). This is expected since the RAG-FW model 
[51] uses a preprocessing stage to crop the retina and has a hybrid CNN 
structure that benefits from additional information provided from a 
segmentation unit. For the third study, our model was compared against 
a multi-scale deep feature fusion (MDFF) model proposed by Das et al. 
[5]. This model takes advantage of a preprocessing block (consisting of 
retinal flattening, image cropping, and image normalization), 
multi-scale spatial pyramid decomposition (MSSP) to create multi-scale 
information of input images, and a classification block consisting of four 
CNNs. Our proposed multi-scale structure correctly classified 999 cases 
out of 1000 (the only incorrect classification was the detection of one 
drusen image as CNV), resulting in an accuracy of 99.9%, which is a 
0.3% improvement over the study conducted by Das et al. [5]. This 
result shows the effectiveness of our proposed methodology, which en
ables end-to-end training with a single input image without any need to 
perform MSSP decomposition or to preprocess input data. In the last 
study, our multi-scale architecture was compared against two studies 
conducted by Fang et al. [16,44]. One study proposes a feature fusion 

Table 6 
Classification results of a 3-class classification problem on the NEH dataset published in this study. Performance measures are according to five-fold cross-validation.  

Model Model # Param 
(mil) 

Runtime/epoch 
(sec) 

Evaluation Metrics 

Description Method Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Weighted CCE 
Loss 

Feature-based Method HOG + SVM – – 67.2 ± 3.7 66.9 ± 3.1 74.3 ± 2.5 – 
Base Deep Learning Models VGG16a [53] 28.3 110 91.6 ± 2.2 91.4 ± 2.0 95.6 ± 1.1 0.31 ± 0.11 

ResNet50 [58] 23.6 111 86.8 ± 2.0 86.4 ± 1.6 93.0 ± 0.9 0.40 ± 0.11 
DenseNet121 [55] 7.0 123 90.0 ± 1.4 89.7 ± 1.7 94.7 ± 0.8 0.31 ± 0.05 
EfficientNetB0 
[56] 

4.0 117 85.4 ± 2.6 84.5 ± 2.2 92.1 ± 1.3 0.40 ± 0.06 

Previous Studies Kermany et al. [20] 0.02 236b 83.9 ± 1.7 82.9 ± 2.3 91.4 ± 1.0 0.42 ± 0.06 
Kaymak et al. [42] 58.3 109 80.2 ± 4.7 80.0 ± 4.4 89.4 ± 2.5 0.53 ± 0.11 
Thomas et al. [46] 2.5 112 68.5 ± 5.0 69.1 ± 4.3 83.8 ± 2.8 0.68 ± 0.07 

Proposed Structure with different 
Backbones 

FPN-VGG16 21.6 167 92.0 ± 1.6 91.8 ± 1.7 95.8 ± 0.9 0.28 ± 0.11 
FPN-ResNet50 31.1 176 90.1 ± 2.9 89.8 ± 2.8 94.8 ± 1.4 0.34 ± 0.08 
FPN-DenseNet121 14.3 196 90.9 ± 1.4 90.5 ± 1.9 95.2 ± 0.7 0.31 ± 0.07 
FPN- 
EfficientNetB0 

12.7 181 87.8 ± 1.3 86.6 ± 1.8 93.3 ± 0.8 0.36 ± 0.05  

a Two dense layers of size 4096 are replaced with dense layers of size 512 in order to make the number of parameters comparable between base and FPN-based 
model. 

b Input images are in 299 × 299 × 3 dimension, which is different than all other models having input dimensions of 224× 224× 3. This makes the runtime/epoch for 
this model uncomparable.  
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strategy to iteratively combine features in layers of CNNs [44], and the 
other one uses a lesion detection network (LDN) to generate an attention 
map and incorporates it into a classification framework [16]. Our pro
posed model achieved superior performance on the NEH dataset 
compared to both proposed methodologies. 

The performance of our proposed method could be further improved 
by incorporating preprocessing blocks (such as retinal cropping and 
flattening) and using more complex feature fusion styles [59–64]. 
However, the goal of this study was to demonstrate the power of feature 
fusion using a simple and understandable design (FPN) for classification. 
To our knowledge, this is the first study that investigates retinal OCT 
classification using FPN structures. 

4.2. Choice of merged scales number 

In this section, we aimed to find the optimum number of merging 
feature maps. The results are analyzed on the FPN-VGG16, the best- 
performing model on the NEH dataset. 

VGG16 structure consists of five convolutional blocks, where each 
block has two or three convolutional layers. In Fig. 2, all five convolu
tional blocks are utilized and merged to build the final model. However, 
merging all blocks would not necessarily result in the best performance. 
To study the effect of feature fusion, we have run the models with five 
different fusion strategies. In the first setting, we only used the top 
convolutional block (scale i = {5}) for retinal pathology classification. 

In the second setting, we fused features of the last two convolutional 
blocks (scales i = {4,5}) and measured the performance. The other 
three settings include adding one more scale each time (scales i =

{3,4,5}, {2,3, 4,5}, {1,2,3, 4, 5}) 
Table 8 presents the results for different combinations of merged 

scales. It can be observed from the results that fusing more feature maps 
increases the number of parameters for the model. Also, it can be seen 
that the best performance is achieved when using the top 3 scales of the 
FPN-VGG16 model (i = {3,4, 5}). The results could be explained in two 
ways:  

1. While later convolutional layers have strong semantics and low 
resolution, earlier layers have weak semantics and high resolution. 
Thus, it could be interpreted that fusing earlier convolutional blocks 
to the final structure would not benefit the whole model 
significantly.  

2. The increase in the number of model parameters in higher scales 
(top-4 and top-5) increases the chance for overparameterization and 
overfitting. 

Considering the reasons mentioned above, we can conclude that a 
trade-off should be found between the number of trainable parameters 
and fused feature maps. In this problem, the optimum point is found to 
be at the scale of i = 3. 

Table 7 
Classification results of a 4-class classification problem on the UCSD dataset.   

Study 
Num 

Details Coration Evaluation Metrics 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Preprocessing 

Study #1 Comparison against off-the-shelf CNNs on the UCSD dataset [20] (last 
version) 

VGG16 [53] 93.9 100 90.8 ×

ResNet50 [54] 96.7 99.6 94.8 £

EfficientNetB0 [56] 95.0 99.8 91.4 £

FPN-VGG16 98.4 100 97.4 £

Study #2 Comparison against four studies on the UCSD dataset (last version) Kermany et al. [20] 96.6 97.8 97.4 £

Kaymak et al. [42] 97.1 98.4 99.6 £

Hwang et al. [7] 96.9 − − £

Hassan et al. [51] 98.6 98.27 99.6 ✓a 

FPN-VGG16 98.4 100 97.4 £

Study #3 Comparison against a study on the UCSD dataset (2nd version) Das et al. [5] 99.6 99.6 99.87 ✓ 
FPN-VGG16 99.9 100 99.8 £

Study #4 Comparison against studies on the UCSD dataset using five-fold cross- 
validation (last version) 

Fang et al. (JVCIR) 
[44] 

87.3 84.7 95.8 £

Fang et al. (TMI) [16] 90.1 86.8 96.6 ✓b 

FPN-VGG16 93.9 93.4 98.0 £

a Input scan was first preprocessed through structure tensors to crop the retina and remove background information, and the image was then passed to a seg
mentation unit for lesion extraction. 

b A lesion detection network (LDN) is first used to generate a soft attention map from the whole OCT image. 

Table 8 
Average performance of models in a five-fold cross-validation setup for different combinations of merged scales.  

Model Evaluation Metrics 

Encoder Type # Param (mil) Accuracy (%) Sensitivity (%) Specificity (%) Weighted CCE Loss 

FPN-VGG16 Top-1 16.2 91.1 ± 1.7 90.4 ± 2.1 95.2 ± 0.9 0.27 ± 0.07 
Top-2 17.6 91.3 ± 1.2 90.9 ± 1.4 95.3 ± 0.8 0.30 ± 0.08 
Top-3 19.0 92.4 ± 2.4 92.0 ± 2.5 95.9 ± 1.3 0.24 ± 0.09 
Top-4 20.3 92.3 ± 1.3 91.9 ± 1.4 95.9 ± 0.8 0.25 ± 0.06 
Top-5 21.6 92.0 ± 1.6 91.8 ± 1.7 95.8 ± 0.9 0.28 ± 0.11  
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4.3. Assessing the effect of gradual learning 

Deep learning models often require a large amount of training data to 
perform well as they have a huge number of parameters that need to be 
tuned by the learning algorithm. However, gathering large training sets 
in medical image analysis is a tedious and time-consuming process as it 
requires experts’ skills, energy, and time. Transfer learning has proved 
to be an effective strategy in reducing the need for large-scale databases 
in order to obtain good performance with deep neural networks. The 
intuition behind transfer learning is that a model trained on a general 
and large-scale database could be used as a generic model of the visual 
world and a starting point for a model on the second task. Using a similar 
idea, we hypothesized that transferring the model’s knowledge from a 
large-scale database in a related medical field could further enhance 
generalizability and be a good starting point for training the final model. 
Thus, we proposed a two-staged gradual learning strategy, where the 
model gradually adapts itself to classifying retinal OCT images. In the 
first stage, we loaded ImageNet weights to the FPN-VGG16’s encoder 
part and used this pre-trained model as a starting point for the second 
stage. In the second stage, we fine-tuned the model on a large-scale 
public database consisting of more than 100 k retinal OCT images 
[20]. This fine-tuned model was used as a starting point for classifying 
OCT images in the NEH database published in this study. It should be 
pointed out that the number of output neurons was matched to the 
classification problem (four neurons for training on the UCSD dataset 
and three neurons for training on the NEH dataset). The hypothesis is 
that this gradual adaptation using large-scale databases would help find 
a better local minimum for a non-convex training criterion. 

To test our hypothesis, we have trained the FPN-VGG16 model using 
three procedures:  

1. In the first procedure, we randomly initialized the weights and 
trained the model on the NEH dataset published in this study.  

2. In the second procedure, we loaded ImageNet pre-trained weights on 
the encoder part of our FPN-VGG16 model and fine-tuned the model 
on the NEH dataset.  

3. In the third procedure, we loaded ImageNet pre-trained weights in 
the first stage, fine-tuned the model on the UCSD dataset [20], and 
fine-tuned the model again on the NEH dataset. 

The results are summarized in Table 9. Comparing strategies 1 and 2, 
we observed a 4.8% increase in overall accuracy (from 87.2%± 2.5% to 
92.0% ± 1.6%), which can be attributed to using Image-Net pre-trained 
weights as starting point to train the model on the NEH database. 
Comparing strategies 2 and 3, we observed another 1.4% increase in 
overall accuracy (from 92.0% ± 1.6% to 93.4% ± 1.4%), which can be 
attributed to the incremental effect of using knowledge in a related 
domain. The second stage of training seems to have provided a better 
starting point by guiding the learning algorithm towards better regions 
(i.e., basins of attractions). This is similar to the idea of curriculum 
learning [65], where the model starts with learning simpler concepts 
first (e.g., learning edges and shapes as in the ImageNet database), and 
then gradually expands its resources and learn more complex ones (e.g., 
learning lesion differences in retinal OCT images). The results demon
strated the effectiveness of the gradual learning strategy in finding better 
local minimum (lower CCE loss) of the non-convex training criterion and 
improving the generalizability of the model. Fig. 3 provides a training 

diagram for three strategies tested in this section. 

4.4. Visualizing decision maps for the proposed multi-scale structure 

Gaining insight into the model’s key features to diagnose a pathology 
has significant importance to medical doctors and patients. Thus, in this 
study, we interpreted the results by plotting CAMs via the Grad-CAM 
technique [66] and discussed the effectiveness of our multi-scale CNN 
approach in improving the overall accuracy. 

In this section, we have plotted CAMs for the FPN-VGG16 model. 
One important upside of using this structure is its ability to detect pa
thologies in different sizes. Considering that the FPN-VGG16 model has 
five convolutional blocks, features were extracted at five different res
olutions of 7× 7, 14× 14, 28× 28, 56× 56, and 112× 112. Fig. 4 il
lustrates heatmaps of these five scales for a single CNV B-scan. 

There are two major benefits with the proposed multi-scale CNN 
structure:  

1. Retinal pathologies that are not distinguishable on a single scale 
might be identified in higher/lower scales. Fig. 5 shows a drusen case 
where the last convolutional block was not able to localize the area of 
interest. The reason for this failure could be justified by the small size 
of drusen present in the OCT image, which made it difficult for the 
last convolutional block (with the coarsest resolution) to correctly 
locate the lesion area. However, the model correctly identifies the 
deposit in the retina associated with drusen when using a finer scale. 

Table 9 
Average performance of models in a five-fold cross-validation setup for evaluating the effect of gradual learning on the Noor Eye Hospital dataset.  

Model Evaluation Metrics 

Encoder Weights Accuracy (%) Sensitivity (%) Specificity (%) Weighted CCE Loss 

FPN-VGG16 Random Initialization 87.2 ± 2.5 86.7 ± 2.6 93.1 ± 1.4 0.39 ± 0.14 
ImageNet 92.0 ± 1.6 91.8 ± 1.7 95.8 ± 0.9 0.28 ± 0.11 
ImageNet + OCT 93.4 ± 1.4 93.1 ± 1.7 96.5 ± 0.8 0.24 ± 0.08  

Fig. 3. Schematic presentation of three learning strategies. In strategy (a), the 
model was initialized with random weights and trained on the NEH dataset. 
This strategy achieved an accuracy of 87.2% ± 2.5%. In strategy (b), the model 
was pre-trained on the ImageNet database and fine-tuned on the NEH dataset. 
This strategy achieved an accuracy of 92.0% ± 1.6%. In strategy (c), the model 
was pre-trained on the ImageNet database, fine-tuned on the UCSD retinal OCT 
database, and fine-tuned again on the NEH dataset. This strategy achieved an 
accuracy of 93.4% ± 1.4%. The gradual learning strategy seems to have pro
vided a better starting point by guiding the learning algorithm towards bet
ter regions. 
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Fig. 4. Generated heatmaps using the Grad-CAM method for all fives scales of the FPN-VGG16 model. (A) Scale 1 with a 112 × 112 output, (B) scale 2 with a 56× 56 
output, (C) scale 3 with a 28 × 28 output, (D) scale 4 with a 14 × 14 output, and (E) scale 5 with a 7 × 7 output. 

Fig. 5. Heatmaps for the first drusen case using the (A) fourth and (B) fifth convolutional block output for the FPN-VGG16 model. As can be observed, the last (fifth) 
convolutional block was not able to localize the area of interest. However, the model correctly identifies the deposit in the retina associated with drusen when using 
the output from a finer scale. Correct classification of this case as drusen with a probability of 90.3% shows the effectiveness of the proposed multi-scale structure. 

Fig. 6. Heatmaps for the second drusen case using the (A) fourth and (B) fifth convolutional block output for the FPN-VGG16 model. The last (fifth) convolutional 
block’s heatmap is unable to precisely locate the macular lesion. However, the fourth convolutional block provides experts with a finer look into the model’s decision- 
making process for classifying this B-scan as drusen. 
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This case was correctly classified as drusen with a high probability of 
90.3%, showing the effectiveness of the proposed multi-scale 
structure.  

2. The multi-scale approach provides the expert with a finer look into 
the model’s decision-making process. While the fifth block of the 
VGG16 model in the FPN structure provides a 7× 7 heatmap using 
the Grad-CAM method, the fourth block provides a 14× 14 heatmap, 
having four times more resolution than the fifth block (twice more 
resolution in the x and y-direction). Fig. 6 illustrates a drusen case 
where the last convolutional layer could not precisely pinpoint 
macular lesion. On the other hand, the finer-scale block provides the 
expert with a more delicate look into the key features used by the 
model in classifying this case as drusen. 

5. Conclusion 

In this paper, we proposed a multi-scale automated method for 
classifying AMD-related retinal pathologies. The two main contributions 
of this study were: (a) designing a multi-scale CNN architecture through 
feature fusion based on FPN architecture, enabling end-to-end training 
and reducing computational complexity compared to the parallel use of 
multiple CNNs, and (b) additional performance enhancement using a 
two-staged (gradual) learning strategy. The advantage of the proposed 
feature fusion strategy is making use of a single CNN, leveraging the 
pyramidal shape of the feature hierarchy to create a multi-scale view. 
The results demonstrated the superior performance of the proposed 
structure compared to several well-known retinal OCT classification 
frameworks. The improvements observed from all FPN-based structures 
when compared to their base models prove the effectiveness of the 
feature fusion strategy used in this study. Besides, we observed that 
tuning the number of fusing feature maps in a multi-scale structure 
would help in improving the model’s performance. Also, gradual 
learning has proved to be an effective method in finding better local 
minimum (lower CCE loss) of the non-convex training criterion and 
improving the generalizability of the model. In the end, qualitative 
evaluation of generated heatmaps via the Grad-CAM technique proved 
the added value of a multi-scale structure, making this model a conve
nient screening tool for reducing the burden on healthcare centers and 
assisting ophthalmologists in making better diagnostic decisions. 
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D. Milea, F. Mériaudeau, D. Sidibé, Classification of SD-OCT volumes using local 
binary patterns: experimental validation for DME detection, J. Ophthalmol. 2016 
(2016) 1–14, https://doi.org/10.1155/2016/3298606. 

[28] P. Burlina, K.D. Pacheco, N. Joshi, D.E. Freund, N.M. Bressler, Comparing humans 
and deep learning performance for grading AMD: a study in using universal deep 
features and transfer learning for automated AMD analysis, Comput. Biol. Med. 82 
(2017) 80–86, https://doi.org/10.1016/j.compbiomed.2017.01.018. 

[29] T. Hassan, M.U. Akram, M.F. Masood, U. Yasin, Deep structure tensor graph search 
framework for automated extraction and characterization of retinal layers and 
fluid pathology in retinal SD-OCT scans, Comput. Biol. Med. 105 (2019) 112–124, 
https://doi.org/10.1016/j.compbiomed.2018.12.015. 

[30] R. Xu, S. Niu, Q. Chen, Z. Ji, D. Rubin, Y. Chen, Automated geographic atrophy 
segmentation for SD-OCT images based on two-stage learning model, Comput. Biol. 
Med. 105 (2019) 102–111, https://doi.org/10.1016/j.compbiomed.2018.12.013. 
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