331 research outputs found

    Cell differentiation: what have we learned in 50 years?

    Full text link
    I revisit two theories of cell differentiation in multicellular organisms published a half-century ago, Stuart Kauffman's global gene regulatory dynamics (GGRD) model and Roy Britten's and Eric Davidson's modular gene regulatory network (MGRN) model, in light of newer knowledge of mechanisms of gene regulation in the metazoans (animals). The two models continue to inform hypotheses and computational studies of differentiation of lineage-adjacent cell types. However, their shared notion (based on bacterial regulatory systems) of gene switches and networks built from them, have constrained progress in understanding the dynamics and evolution of differentiation. Recent work has described unique write-read-rewrite chromatin-based expression encoding in eukaryotes, as well metazoan-specific processes of gene activation and silencing in condensed-phase, enhancer-recruiting regulatory hubs, employing disordered proteins, including transcription factors, with context-dependent identities. These findings suggest an evolutionary scenario in which the origination of differentiation in animals, rather than depending exclusively on adaptive natural selection, emerged as a consequence of a type of multicellularity in which the novel metazoan gene regulatory apparatus was readily mobilized to amplify and exaggerate inherent cell functions of unicellular ancestors. The plausibility of this hypothesis is illustrated by the evolution of the developmental role of Grainyhead-like in the formation of epithelium

    Investigating modularity and transparency within bioinspired connectionist architectures using genetic and epigenetic models

    Get PDF
    Machine learning algorithms allow computers to deal with incomplete data in tasks such as speech recognition and object detection. Some machine learning algorithms take inspiration from biological systems due to useful properties such as robustness, allowing algorithms to be flexible and domain agnostic. This comes at a cost, resulting in difficulty when one attempts to understand the reasoning behind decisions. This is problematic when such models are applied in realworld situations where accountability, legality, and maintenance are of concern. Artificial gene regulatory networks (AGRNs) are a type of connectionist architecture inspired by gene regulatory mechanisms. AGRNs are of interest within this thesis due to their ability to solve tasks in chaotic dynamical systems despite their relatively small size.The overarching aim of this work was to investigate the properties of connectionist architectures to improve the transparency of their execution. Initially, the evolutionary process and internal structure of AGRNs were investigated. Following this, the creation of an external control layer used to improve the transparency of execution of an external connectionist architecture was attempted.When investigating the evolutionary process of AGRNs, pathways were found that when followed, produced more performant networks in a shorter time frame. Evidence that AGRNs are capable of performing well despite internal interference was found when investigating their modularity, where it was also discovered that they do not develop strict modularity consistently. A control layer inspired by epigenetics that selectively deactivates nodes in trained artificial neural networks (ANNs) was developed; the analysis of its behaviour provided an insight into the internal workings of the ANN

    Synthetic biology: Understanding biological design from synthetic circuits

    Get PDF
    An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here, we highlight how the process of engineering biological systems — from synthetic promoters to the control of cell–cell interactions — has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to grasp intuitively the ranges of behaviour generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes, such as gene expression and population dynamics

    Taking into account nucleosomes for predicting gene expression

    Get PDF
    The eukaryotic genome is organized in a chain of nucleosomes that consist of 145-147. bp of DNA wrapped around a histone octamer protein core. Binding of transcription factors (TF) to nucleosomal DNA is frequently impeded, which makes it a challenging task to calculate TF occupancy at a given regulatory genomic site for predicting gene expression. Here, we review methods to calculate TF binding to DNA in the presence of nucleosomes. The main theoretical problems are (i) the computation speed that is becoming a bottleneck when partial unwrapping of DNA from the nucleosome is considered, (ii) the perturbation of the binding equilibrium by the activity of ATP-dependent chromatin remodelers, which translocate nucleosomes along the DNA, and (iii) the model parameterization from high-throughput sequencing data and fluorescence microscopy experiments in living cells. We discuss strategies that address these issues to efficiently compute transcription factor binding in chromatin. © 2013 Elsevier Inc

    Programming gene expression with combinatorial promoters

    Get PDF
    Promoters control the expression of genes in response to one or more transcription factors (TFs). The architecture of a promoter is the arrangement and type of binding sites within it. To understand natural genetic circuits and to design promoters for synthetic biology, it is essential to understand the relationship between promoter function and architecture. We constructed a combinatorial library of random promoter architectures. We characterized 288 promoters in Escherichia coli, each containing up to three inputs from four different TFs. The library design allowed for multiple −10 and −35 boxes, and we observed varied promoter strength over five decades. To further analyze the functional repertoire, we defined a representation of promoter function in terms of regulatory range, logic type, and symmetry. Using these results, we identified heuristic rules for programming gene expression with combinatorial promoters

    Engineering biological networks using cooperative transcriptional assembly

    Full text link
    Eukaryotic genes are often regulated by multivalent transcription factor (TF) complexes. Through the process of cooperative self-assembly, these complexes carry out non-linear regulatory operations involved in cellular decision-making and signal processing. In this thesis, we apply this natural design principle to artificial networks, testing whether engineered cooperative TF assemblies can be used to program non-linear synthetic circuit behavior in yeast. Using a model-guided approach, we show that specifying strength and number of interactions in an assembly enables predictive tuning between regimes of linear and non-linear regulatory response for single- and multi-input circuits. We demonstrate that synthetic assemblies can be adjusted to control circuit dynamics, shaping the timing of activation. We harness this capability to engineer circuits that perform dynamic filtering, enabling frequency-dependent decoding in cell populations. Thru this work, we find that cooperative assembly provides a versatile way to tune nonlinearity of network connections, dramatically expanding the range engineerable behaviors available to synthetic circuits. We then extend our modeling-framework to predict genome-wide binding of our TF assemblies and find that cooperative complexes made of weakly-interacting proteins can reduce unintended activation of endogenous genes. Thus, we are able to introduce synthetic regulatory components with low fitness costs on the cell, ensuring long-term stability of our integrated circuits over time. Taken together, this dissertation outlines a synthetic framework for building cooperative transcriptional complexes in vivo in order to engineer complex regulatory behaviors that are functionally orthogonal to the host cell.2019-10-22T00:00:00

    Topology and dynamics of an artificial genetic regulatory network model

    Get PDF
    This thesis presents some of the methods of studying models of regulatory networks using mathematical and computational formalisms. A basic review of the biology behind gene regulation is introduced along with the formalisms used for modelling networks of such regulatory interactions. Topological measures of large-scale complex networks are discussed and then applied to a specific artificial regulatory network model created through a duplication and divergence mechanism. Such networks share topological features with natural transcriptional regulatory networks. Thus, it may be the case that the topologies inherent in natural networks may be primarily due to their method of creation rather than being exclusively shaped by subsequent evolution under selection. The evolvability of the dynamics of these networks are also examined by evolving networks in simulation to obtain three simple types of output dynamics. The networks obtained from this process show a wide variety of topologies and numbers of genes indicating that it is relatively easy to evolve these classes of dynamics in this model

    Principles of genetic circuit design

    Get PDF
    Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.National Institute of General Medical Sciences (U.S.) (Grant P50 GM098792)National Institute of General Medical Sciences (U.S.) (Grant R01 GM095765)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (EEC0540879)Life Technologies, Inc. (A114510)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant 4500000552
    corecore