96,412 research outputs found

    Random Boolean Networks

    Full text link
    This review explains in a self-contained way the properties of random Boolean networks and their attractors, with a special focus on critical networks. Using small example networks, analytical calculations, phenomenological arguments, and problems to solve, the basic concepts are introduced and important results concerning phase diagrams, numbers of relevant nodes and attractor properties are derived.Comment: This is a review on Random Boolean Networks. The new version now includes a proper title page. The main body is unchange

    Symmetry in Critical Random Boolean Network Dynamics

    Full text link
    Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions that consist of Boolean functions that behave similarly. These classes are orbits of the controlling symmetry group. We find that the symmetry that controls the critical random Boolean networks is expressed through the frequency by which output functions are utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using the symmetry of the behavior of the nodes to characterize complex network dynamics, and introduce a novel approach to the analysis of heterogeneous complex systems

    Response of Boolean networks to perturbations

    Full text link
    We evaluate the probability that a Boolean network returns to an attractor after perturbing h nodes. We find that the return probability as function of h can display a variety of different behaviours, which yields insights into the state-space structure. In addition to performing computer simulations, we derive analytical results for several types of Boolean networks, in particular for Random Boolean Networks. We also apply our method to networks that have been evolved for robustness to small perturbations, and to a biological example
    • …
    corecore