354 research outputs found

    Fourier sparsity, spectral norm, and the Log-rank conjecture

    Full text link
    We study Boolean functions with sparse Fourier coefficients or small spectral norm, and show their applications to the Log-rank Conjecture for XOR functions f(x\oplus y) --- a fairly large class of functions including well studied ones such as Equality and Hamming Distance. The rank of the communication matrix M_f for such functions is exactly the Fourier sparsity of f. Let d be the F2-degree of f and D^CC(f) stand for the deterministic communication complexity for f(x\oplus y). We show that 1. D^CC(f) = O(2^{d^2/2} log^{d-2} ||\hat f||_1). In particular, the Log-rank conjecture holds for XOR functions with constant F2-degree. 2. D^CC(f) = O(d ||\hat f||_1) = O(\sqrt{rank(M_f)}\logrank(M_f)). We obtain our results through a degree-reduction protocol based on a variant of polynomial rank, and actually conjecture that its communication cost is already \log^{O(1)}rank(M_f). The above bounds also hold for the parity decision tree complexity of f, a measure that is no less than the communication complexity (up to a factor of 2). Along the way we also show several structural results about Boolean functions with small F2-degree or small spectral norm, which could be of independent interest. For functions f with constant F2-degree: 1) f can be written as the summation of quasi-polynomially many indicator functions of subspaces with \pm-signs, improving the previous doubly exponential upper bound by Green and Sanders; 2) being sparse in Fourier domain is polynomially equivalent to having a small parity decision tree complexity; 3) f depends only on polylog||\hat f||_1 linear functions of input variables. For functions f with small spectral norm: 1) there is an affine subspace with co-dimension O(||\hat f||_1) on which f is a constant; 2) there is a parity decision tree with depth O(||\hat f||_1 log ||\hat f||_0).Comment: v2: Corollary 31 of v1 removed because of a bug in the proof. (Other results not affected.

    Lower Bounds for (Non-Monotone) Comparator Circuits

    Get PDF
    Comparator circuits are a natural circuit model for studying the concept of bounded fan-out computations, which intuitively corresponds to whether or not a computational model can make "copies" of intermediate computational steps. Comparator circuits are believed to be weaker than general Boolean circuits, but they can simulate Branching Programs and Boolean formulas. In this paper we prove the first superlinear lower bounds in the general (non-monotone) version of this model for an explicitly defined function. More precisely, we prove that the n-bit Element Distinctness function requires ?((n/ log n)^(3/2)) size comparator circuits

    What Circuit Classes Can Be Learned with Non-Trivial Savings?

    Get PDF
    Despite decades of intensive research, efficient - or even sub-exponential time - distribution-free PAC learning algorithms are not known for many important Boolean function classes. In this work we suggest a new perspective on these learning problems, inspired by a surge of recent research in complexity theory, in which the goal is to determine whether and how much of a savings over a naive 2^n runtime can be achieved. We establish a range of exploratory results towards this end. In more detail, (1) We first observe that a simple approach building on known uniform-distribution learning results gives non-trivial distribution-free learning algorithms for several well-studied classes including AC0, arbitrary functions of a few linear threshold functions (LTFs), and AC0 augmented with mod_p gates. (2) Next we present an approach, based on the method of random restrictions from circuit complexity, which can be used to obtain several distribution-free learning algorithms that do not appear to be achievable by approach (1) above. The results achieved in this way include learning algorithms with non-trivial savings for LTF-of-AC0 circuits and improved savings for learning parity-of-AC0 circuits. (3) Finally, our third contribution is a generic technique for converting lower bounds proved using Neciporuk\u27s method to learning algorithms with non-trivial savings. This technique, which is the most involved of our three approaches, yields distribution-free learning algorithms for a range of classes where previously even non-trivial uniform-distribution learning algorithms were not known; these classes include full-basis formulas, branching programs, span programs, etc. up to some fixed polynomial size

    Circuits with Medium Fan-In

    Get PDF
    We consider boolean circuits in which every gate may compute an arbitrary boolean function of k other gates, for a parameter k. We give an explicit function $f:{0,1}^n -> {0,1} that requires at least Omega(log^2(n)) non-input gates when k = 2n/3. When the circuit is restricted to being layered and depth 2, we prove a lower bound of n^(Omega(1)) on the number of non-input gates. When the circuit is a formula with gates of fan-in k, we give a lower bound Omega(n^2/k*log(n)) on the total number of gates. Our model is connected to some well known approaches to proving lower bounds in complexity theory. Optimal lower bounds for the Number-On-Forehead model in communication complexity, or for bounded depth circuits in AC_0, or extractors for varieties over small fields would imply strong lower bounds in our model. On the other hand, new lower bounds for our model would prove new time-space tradeoffs for branching programs and impossibility results for (fan-in 2) circuits with linear size and logarithmic depth. In particular, our lower bound gives a different proof for a known time-space tradeoff for oblivious branching programs

    Sensitivity Conjecture and Log-rank Conjecture for functions with small alternating numbers

    Get PDF
    The Sensitivity Conjecture and the Log-rank Conjecture are among the most important and challenging problems in concrete complexity. Incidentally, the Sensitivity Conjecture is known to hold for monotone functions, and so is the Log-rank Conjecture for f(xy)f(x \wedge y) and f(xy)f(x\oplus y) with monotone functions ff, where \wedge and \oplus are bit-wise AND and XOR, respectively. In this paper, we extend these results to functions ff which alternate values for a relatively small number of times on any monotone path from 0n0^n to 1n1^n. These deepen our understandings of the two conjectures, and contribute to the recent line of research on functions with small alternating numbers

    Decision Trees, Protocols, and the Fourier Entropy-Influence Conjecture

    Full text link
    Given f:{1,1}n{1,1}f:\{-1, 1\}^n \rightarrow \{-1, 1\}, define the \emph{spectral distribution} of ff to be the distribution on subsets of [n][n] in which the set SS is sampled with probability f^(S)2\widehat{f}(S)^2. Then the Fourier Entropy-Influence (FEI) conjecture of Friedgut and Kalai (1996) states that there is some absolute constant CC such that H[f^2]CInf[f]\operatorname{H}[\widehat{f}^2] \leq C\cdot\operatorname{Inf}[f]. Here, H[f^2]\operatorname{H}[\widehat{f}^2] denotes the Shannon entropy of ff's spectral distribution, and Inf[f]\operatorname{Inf}[f] is the total influence of ff. This conjecture is one of the major open problems in the analysis of Boolean functions, and settling it would have several interesting consequences. Previous results on the FEI conjecture have been largely through direct calculation. In this paper we study a natural interpretation of the conjecture, which states that there exists a communication protocol which, given subset SS of [n][n] distributed as f^2\widehat{f}^2, can communicate the value of SS using at most CInf[f]C\cdot\operatorname{Inf}[f] bits in expectation. Using this interpretation, we are able show the following results: 1. First, if ff is computable by a read-kk decision tree, then H[f^2]9kInf[f]\operatorname{H}[\widehat{f}^2] \leq 9k\cdot \operatorname{Inf}[f]. 2. Next, if ff has Inf[f]1\operatorname{Inf}[f] \geq 1 and is computable by a decision tree with expected depth dd, then H[f^2]12dInf[f]\operatorname{H}[\widehat{f}^2] \leq 12d\cdot \operatorname{Inf}[f]. 3. Finally, we give a new proof of the main theorem of O'Donnell and Tan (ICALP 2013), i.e. that their FEI+^+ conjecture composes. In addition, we show that natural improvements to our decision tree results would be sufficient to prove the FEI conjecture in its entirety. We believe that our methods give more illuminating proofs than previous results about the FEI conjecture
    corecore