13 research outputs found

    Twenty-Five Comparators is Optimal when Sorting Nine Inputs (and Twenty-Nine for Ten)

    Full text link
    This paper describes a computer-assisted non-existence proof of nine-input sorting networks consisting of 24 comparators, hence showing that the 25-comparator sorting network found by Floyd in 1964 is optimal. As a corollary, we obtain that the 29-comparator network found by Waksman in 1969 is optimal when sorting ten inputs. This closes the two smallest open instances of the optimal size sorting network problem, which have been open since the results of Floyd and Knuth from 1966 proving optimality for sorting networks of up to eight inputs. The proof involves a combination of two methodologies: one based on exploiting the abundance of symmetries in sorting networks, and the other, based on an encoding of the problem to that of satisfiability of propositional logic. We illustrate that, while each of these can single handed solve smaller instances of the problem, it is their combination which leads to an efficient solution for nine inputs.Comment: 18 page

    Solving Graph Coloring Problems with Abstraction and Symmetry

    Get PDF
    This paper introduces a general methodology, based on abstraction and symmetry, that applies to solve hard graph edge-coloring problems and demonstrates its use to provide further evidence that the Ramsey number R(4,3,3)=30R(4,3,3)=30. The number R(4,3,3)R(4,3,3) is often presented as the unknown Ramsey number with the best chances of being found "soon". Yet, its precise value has remained unknown for more than 50 years. We illustrate our approach by showing that: (1) there are precisely 78{,}892 (3,3,3;13)(3,3,3;13) Ramsey colorings; and (2) if there exists a (4,3,3;30)(4,3,3;30) Ramsey coloring then it is (13,8,8) regular. Specifically each node has 13 edges in the first color, 8 in the second, and 8 in the third. We conjecture that these two results will help provide a proof that no (4,3,3;30)(4,3,3;30) Ramsey coloring exists implying that R(4,3,3)=30R(4,3,3)=30

    A parametric approach for smaller and better encodings of cardinality constraints

    Get PDF
    Adequate encodings for high-level constraints are a key ingredient for the application of SAT technology. In particular, cardinality constraints state that at most (at least, or exactly) k out of n propositional variables can be true. They are crucial in many applications. Although sophisticated encodings for cardinality constraints exist, it is well known that for small n and k straightforward encodings without auxiliary variables sometimes behave better, and that the choice of the right trade-off between minimizing either the number of variables or the number of clauses is highly application-dependent. Here we build upon previous work on Cardinality Networks to get the best of several worlds: we develop an arc-consistent encoding that, by recursively decomposing the constraint into smaller ones, allows one to decide which encoding to apply to each sub-constraint. This process minimizes a function λ·num- vars + num-clauses, where λ is a parameter that can be tuned by the user. Our careful experimental evaluation shows that (e.g., for λ = 5) this new technique produces much smaller encodings in variables and clauses, and indeed strongly improves SAT solvers' performance.Postprint (author’s final draft
    corecore