92 research outputs found

    Analyzing Boltzmann Samplers for Bose-Einstein Condensates with Dirichlet Generating Functions

    Full text link
    Boltzmann sampling is commonly used to uniformly sample objects of a particular size from large combinatorial sets. For this technique to be effective, one needs to prove that (1) the sampling procedure is efficient and (2) objects of the desired size are generated with sufficiently high probability. We use this approach to give a provably efficient sampling algorithm for a class of weighted integer partitions related to Bose-Einstein condensation from statistical physics. Our sampling algorithm is a probabilistic interpretation of the ordinary generating function for these objects, derived from the symbolic method of analytic combinatorics. Using the Khintchine-Meinardus probabilistic method to bound the rejection rate of our Boltzmann sampler through singularity analysis of Dirichlet generating functions, we offer an alternative approach to analyze Boltzmann samplers for objects with multiplicative structure.Comment: 20 pages, 1 figur

    Uniform random sampling of planar graphs in linear time

    Get PDF
    This article introduces new algorithms for the uniform random generation of labelled planar graphs. Its principles rely on Boltzmann samplers, as recently developed by Duchon, Flajolet, Louchard, and Schaeffer. It combines the Boltzmann framework, a suitable use of rejection, a new combinatorial bijection found by Fusy, Poulalhon and Schaeffer, as well as a precise analytic description of the generating functions counting planar graphs, which was recently obtained by Gim\'enez and Noy. This gives rise to an extremely efficient algorithm for the random generation of planar graphs. There is a preprocessing step of some fixed small cost. Then, the expected time complexity of generation is quadratic for exact-size uniform sampling and linear for approximate-size sampling. This greatly improves on the best previously known time complexity for exact-size uniform sampling of planar graphs with nn vertices, which was a little over O(n7)O(n^7).Comment: 55 page

    Infinite Boltzmann Samplers and Applications to Branching Processes

    Get PDF
    National audienceIn this short note, we extend the Boltzmann model for combinatorial random sampling [8] to allow for infinite size objects; in particular, this extension now fully includes Galton-Watson processes. We then illustrate our idea with two examples, one of which is the generation of prefixes of infinite Cayley trees
    corecore