284 research outputs found

    Compactly supported radial basis functions: How and why?

    Get PDF
    Compactly supported basis functions are widely required and used in many applications. We explain why radial basis functions are preferred to multi-variate polynomials for scattered data approximation in high-dimensional space and give a brief description on how to construct the most commonly used compactly supported radial basis functions - the Wendland functions and the new found missing Wendland functions. One can construct a compactly supported radial basis function with required smoothness according to the procedure described here without sophisticated mathematics. Very short programs and extended tables for compactly supported radial basis functions are supplied

    An Entropy Search Portfolio for Bayesian Optimization

    Full text link
    Bayesian optimization is a sample-efficient method for black-box global optimization. How- ever, the performance of a Bayesian optimization method very much depends on its exploration strategy, i.e. the choice of acquisition function, and it is not clear a priori which choice will result in superior performance. While portfolio methods provide an effective, principled way of combining a collection of acquisition functions, they are often based on measures of past performance which can be misleading. To address this issue, we introduce the Entropy Search Portfolio (ESP): a novel approach to portfolio construction which is motivated by information theoretic considerations. We show that ESP outperforms existing portfolio methods on several real and synthetic problems, including geostatistical datasets and simulated control tasks. We not only show that ESP is able to offer performance as good as the best, but unknown, acquisition function, but surprisingly it often gives better performance. Finally, over a wide range of conditions we find that ESP is robust to the inclusion of poor acquisition functions.Comment: 10 pages, 5 figure

    Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations

    Get PDF
    The success of deep convolutional architectures is often attributed in part to their ability to learn multiscale and invariant representations of natural signals. However, a precise study of these properties and how they affect learning guarantees is still missing. In this paper, we consider deep convolutional representations of signals; we study their invariance to translations and to more general groups of transformations, their stability to the action of diffeomorphisms, and their ability to preserve signal information. This analysis is carried by introducing a multilayer kernel based on convolutional kernel networks and by studying the geometry induced by the kernel mapping. We then characterize the corresponding reproducing kernel Hilbert space (RKHS), showing that it contains a large class of convolutional neural networks with homogeneous activation functions. This analysis allows us to separate data representation from learning, and to provide a canonical measure of model complexity, the RKHS norm, which controls both stability and generalization of any learned model. In addition to models in the constructed RKHS, our stability analysis also applies to convolutional networks with generic activations such as rectified linear units, and we discuss its relationship with recent generalization bounds based on spectral norms

    Convergence Rates of Approximation by Translates

    Get PDF
    In this paper we consider the problem of approximating a function belonging to some funtion space Φ by a linear comination of n translates of a given function G. Ussing a lemma by Jones (1990) and Barron (1991) we show that it is possible to define function spaces and functions G for which the rate of convergence to zero of the erro is 0(1/n) in any number of dimensions. The apparent avoidance of the "curse of dimensionality" is due to the fact that these function spaces are more and more constrained as the dimension increases. Examples include spaces of the Sobolev tpe, in which the number of weak derivatives is required to be larger than the number of dimensions. We give results both for approximation in the L2 norm and in the Lc norm. The interesting feature of these results is that, thanks to the constructive nature of Jones" and Barron"s lemma, an iterative procedure is defined that can achieve this rate
    corecore