776,718 research outputs found

    Relay-proof channels using UWB lasers

    Get PDF
    Alice is a hand-held device. Bob is a device providing a service, such as an ATM, an automatic door, or an anti-aircraft gun pointing at the gyro-copter in which Alice is travelling. Bob and Alice have never met, but share a key, which Alice uses to request a service from Bob (dispense cash, open door, don't shoot). Mort pretends to Bob that she is Alice, and her accomplice Cove pretends to Alice that he is Bob. Mort and Cove relay the appropriate challenges and responses to one another over a channel hidden from Alice and Bob. Meanwhile Alice waits impatiently in front of a different ATM, or the wrong door, or another gun. How can such an attack be prevented?Final Accepted Versio

    Zero knowledge convincing protocol on quantum bit is impossible

    Full text link
    Consider two parties: Alice and Bob and suppose that Bob is given a qubit system in a quantum state ϕ\phi, unknown to him. Alice knows ϕ\phi and she is supposed to convince Bob that she knows ϕ\phi sending some test message. Is it possible for her to convince Bob providing him "zero knowledge" i. e. no information about ϕ\phi he has? We prove that there is no "zero knowledge" protocol of that kind. In fact it turns out that basing on Alice message, Bob (or third party - Eve - who can intercept the message) can synthetize a copy of the unknown qubit state ϕ\phi with nonzero probability. This "no-go" result puts general constrains on information processing where information {\it about} quantum state is involved.Comment: 4 pages, RevTe

    Real Estate Equity Investments and the Institutional Lender: Nothing Ventured, Nothing Gained

    Get PDF
    We consider a setup in which the channel from Alice to Bob is less noisy than the channel from Eve to Bob. We show that there exist encoding and decoding which accomplish error correction and authentication simultaneously; that is, Bob is able to correctly decode a message coming from Alice and reject a message coming from Eve with high probability. The system does not require any secret key shared between Alice and Bob, provides information theoretic security, and can safely be composed with other protocols in an arbitrary context

    The quantum cryptographic switch

    Full text link
    We illustrate using a quantum system the principle of a cryptographic switch, in which a third party (Charlie) can control to a continuously varying degree the amount of information the receiver (Bob) receives, after the sender (Alice) has sent her information. Suppose Charlie transmits a Bell state to Alice and Bob. Alice uses dense coding to transmit two bits to Bob. Only if the 2-bit information corresponding to choice of Bell state is made available by Charlie to Bob can the latter recover Alice's information. By varying the information he gives, Charlie can continuously vary the information recovered by Bob. The performance of the protocol subjected to the squeezed generalized amplitude damping channel is considered. We also present a number of practical situations where a cryptographic switch would be of use.Comment: 7 pages, 4 Figure

    Parallel repetition: simplifications and the no-signaling case

    Full text link
    Consider a game where a refereed a referee chooses (x,y) according to a publicly known distribution P_XY, sends x to Alice, and y to Bob. Without communicating with each other, Alice responds with a value "a" and Bob responds with a value "b". Alice and Bob jointly win if a publicly known predicate Q(x,y,a,b) holds. Let such a game be given and assume that the maximum probability that Alice and Bob can win is v<1. Raz (SIAM J. Comput. 27, 1998) shows that if the game is repeated n times in parallel, then the probability that Alice and Bob win all games simultaneously is at most v'^(n/log(s)), where s is the maximal number of possible responses from Alice and Bob in the initial game, and v' is a constant depending only on v. In this work, we simplify Raz's proof in various ways and thus shorten it significantly. Further we study the case where Alice and Bob are not restricted to local computations and can use any strategy which does not imply communication among them.Comment: 27 pages; v2:PRW97 strengthening added, references added, typos fixed; v3: fixed error in the proof of the no-signaling theorem, minor change
    corecore