365 research outputs found

    Real-time signal detection and classification algorithms for body-centered systems

    Full text link
    El principal motivo por el cual los sistemas de comunicación en el entrono corporal se desean con el objetivo de poder obtener y procesar señales biométricas para monitorizar e incluso tratar una condición médica sea ésta causada por una enfermedad o el rendimiento de un atleta. Dado que la base de estos sistemas está en la sensorización y el procesado, los algoritmos de procesado de señal son una parte fundamental de los mismos. Esta tesis se centra en los algoritmos de tratamiento de señales en tiempo real que se utilizan tanto para monitorizar los parámetros como para obtener la información que resulta relevante de las señales obtenidas. En la primera parte se introduce los tipos de señales y sensores en los sistemas en el entrono corporal. A continuación se desarrollan dos aplicaciones concretas de los sistemas en el entorno corporal así como los algoritmos que en las mismas se utilizan. La primera aplicación es el control de glucosa en sangre en pacientes con diabetes. En esta parte se desarrolla un método de detección mediante clasificación de patronones de medidas erróneas obtenidas con el monitor contínuo comercial "Minimed CGMS". La segunda aplicacióin consiste en la monitorizacióni de señales neuronales. Descubrimientos recientes en este campo han demostrado enormes posibilidades terapéuticas (por ejemplo, pacientes con parálisis total que son capaces de comunicarse con el entrono gracias a la monitorizacióin e interpretación de señales provenientes de sus neuronas) y también de entretenimiento. En este trabajo, se han desarrollado algoritmos de detección, clasificación y compresión de impulsos neuronales y dichos algoritmos han sido evaluados junto con técnicas de transmisión inalámbricas que posibiliten una monitorización sin cables. Por último, se dedica un capítulo a la transmisión inalámbrica de señales en los sistemas en el entorno corporal. En esta parte se estudia las condiciones del canal que presenta el entorno corporal para la transmisión de sTraver Sebastiá, L. (2012). Real-time signal detection and classification algorithms for body-centered systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16188Palanci

    Mobihealth: mobile health services based on body area networks

    Get PDF
    In this chapter we describe the concept of MobiHealth and the approach developed during the MobiHealth project (MobiHealth, 2002). The concept was to bring together the technologies of Body Area Networks (BANs), wireless broadband communications and wearable medical devices to provide mobile healthcare services for patients and health professionals. These technologies enable remote patient care services such as management of chronic conditions and detection of health emergencies. Because the patient is free to move anywhere whilst wearing the MobiHealth BAN, patient mobility is maximised. The vision is that patients can enjoy enhanced freedom and quality of life through avoidance or reduction of hospital stays. For the health services it means that pressure on overstretched hospital services can be alleviated

    Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    Get PDF
    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation

    Transmisión de señales neuronales con UWB y medidas de canal en entorno corporal

    Full text link
    [ES] La captación, comprensión e interpretación de las señales neuronales, son las claves para el estudio del funcionamiento del cerebro humano. Los dispositivos de captación y transmisión de señales tienden actualmente hacia la transmisión inalámbrica, especialmente debido a la movilidad que esta ofrece. En el siguiente trabajo se estudiará la transmisión de señales neuronales utilizando la tecnología inalámbrica Ultra Wideband, cuya elección se justifica teniendo en cuenta los requerimientos de ancho de banda de la aplicación. Por un lado, se realizarán transmisiones de archivos que contienen señales neuronales reales para distintas velocidades de envío y se analizarán los datos recibidos. Por otro, se hará un estudio del canal Ultra Wideband en entorno corporal para dos casos distintos: un enlace implante cerebral a dispositivo móvil y un enlace implante cerebral a implante corporal. Se realizará una campaña de medidas del canal para diferentes posiciones de antena transmisora y receptora, según los casos contemplados. De estas medidas se extraerá información relativa al canal, tal como path loss, power delay profile, delay spread, etc. Finalmente, se utilizará la información obtenida para sacar conclusiones acerca de viabilidad de la transmisión y velocidades posibles de transmisión[EN] Recording, comprehension and interpretation of the neural signals are the keys for the study of the human¿s brain function. The recording and transmission devices of signals tend nowadays towards the wireless transmission, especially due to the mobility that offers. In this work, neural signal transmission has been performed using Ultra Wideband wireless technology because of the bandwidth requirements of the application. On the one hand, several file transmissions containing real neural signals have been transmitted at different data rates and the received data have been analyzed. On the other hand, the Ultra Wideband channel in corporal environment has been studied for two different cases: a link between an implant located in the head and a handheld device and a link between a head implant and a body implant. A measurement campaign has been held with different transmitter and receiver antenna locations for both cases. With theseMartí Rocafull, P. (2007). Transmisión de señales neuronales con UWB y medidas de canal en entorno corporal. http://hdl.handle.net/10251/12252Archivo delegad

    ANÁLISIS Y COMPRESIÓN DE SEÑALES NEURONALES PARA SU TRANSMISIÓN INALÁMBRICA

    Full text link
    Esta tesina ofrece un estudio sobre un sistema para la captación, compresión y transmisión inalámbrica de las señales neuronales, en el que destaca la movilidad que ofrece la transmisión inalámbrica ya que permitirá tanto la realización de experimentos "in-vivo", como el desarrollo de dispositivos implantables sin los inconvenientes del cableado.Traver Sebastiá, L. (2007). ANÁLISIS Y COMPRESIÓN DE SEÑALES NEURONALES PARA SU TRANSMISIÓN INALÁMBRICA. http://hdl.handle.net/10251/12540Archivo delegad

    Cognitive Radio Networks: Realistic or Not?

    Full text link
    A large volume of research has been conducted in the cognitive radio (CR) area the last decade. However, the deployment of a commercial CR network is yet to emerge. A large portion of the existing literature does not build on real world scenarios, hence, neglecting various important interactions of the research with commercial telecommunication networks. For instance, a lot of attention has been paid to spectrum sensing as the front line functionality that needs to be completed in an efficient and accurate manner to enable an opportunistic CR network architecture. This is necessary to detect the existence of spectrum holes without which no other procedure can be fulfilled. However, simply sensing (cooperatively or not) the energy received from a primary transmitter cannot enable correct dynamic spectrum access. For example, the low strength of a primary transmitter's signal does not assure that there will be no interference to a nearby primary receiver. In addition, the presence of a primary transmitter's signal does not mean that CR network users cannot access the spectrum since there might not be any primary receiver in the vicinity. Despite the existing elegant and clever solutions to the DSA problem no robust, implementable scheme has emerged. In this paper, we challenge the basic premises of the proposed schemes. We further argue that addressing the technical challenges we face in deploying robust CR networks can only be achieved if we radically change the way we design their basic functionalities. In support of our argument, we present a set of real-world scenarios, inspired by realistic settings in commercial telecommunications networks, focusing on spectrum sensing as a basic and critical functionality in the deployment of CRs. We use these scenarios to show why existing DSA paradigms are not amenable to realistic deployment in complex wireless environments.Comment: Work in progres

    A heterogeneous short-range communication platform for internet of vehicles

    Get PDF
    The automotive industry is rapidly accelerating toward the development of innovative industry applications that feature management capabilities for data and applications alike in cars. In this regard, more internet of vehicles solutions are emerging through advancements of various wireless medium access-control technologies and the internet of things. In the present work, we develop a short-range communication–based vehicular system to support vehicle communication and remote car control. We present a combined hardware and software testbed that is capable of controlling a vehicle’s start-up, operation and several related functionalities covering various vehicle metric data. The testbed is built from two microcontrollers, Arduino and Raspberry Pi 3, each of which individually controls certain functions to improve the overall vehicle control. The implementation of the heterogeneous communication module is based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 and IEEE 802.15 medium access control technologies. Further, a control module on a smartphone was designed and implemented for efficient management. Moreover, we study the system connectivity performance by measuring various important parameters including the coverage distance, signal strength, download speed and latency. This study covers the use of this technology setup in different geographical areas over various time spans

    Fully portable and wireless universal brain-machine interfaces enabled by flexible scalp electronics and deep-learning algorithm

    Get PDF
    Variation in human brains creates difficulty in implementing electroencephalography (EEG) into universal brain-machine interfaces (BMI). Conventional EEG systems typically suffer from motion artifacts, extensive preparation time, and bulky equipment, while existing EEG classification methods require training on a per-subject or per-session basis. Here, we introduce a fully portable, wireless, flexible scalp electronic system, incorporating a set of dry electrodes and flexible membrane circuit. Time domain analysis using convolutional neural networks allows for an accurate, real-time classification of steady-state visually evoked potentials on the occipital lobe. Simultaneous comparison of EEG signals with two commercial systems captures the improved performance of the flexible electronics with significant reduction of noise and electromagnetic interference. The two-channel scalp electronic system achieves a high information transfer rate (122.1 ± 3.53 bits per minute) with six human subjects, allowing for a wireless, real-time, universal EEG classification for an electronic wheelchair, motorized vehicle, and keyboard-less presentation

    An efficient telemetry system for restoring sight

    Get PDF
    PhD ThesisThe human nervous system can be damaged as a result of disease or trauma, causing conditions such as Parkinson’s disease. Most people try pharmaceuticals as a primary method of treatment. However, drugs cannot restore some cases, such as visual disorder. Alternatively, this impairment can be treated with electronic neural prostheses. A retinal prosthesis is an example of that for restoring sight, but it is not efficient and only people with retinal pigmentosa benefit from it. In such treatments, stimulation of the nervous system can be achieved by electrical or optical means. In the latter case, the nerves need to be rendered light sensitive via genetic means (optogenetics). High radiance photonic devices are then required to deliver light to the target tissue. Such optical approaches hold the potential to be more effective while causing less harm to the brain tissue. As these devices are implanted in tissue, wireless means need to be used to communicate with them. For this, IEEE 802.15.6 or Bluetooth protocols at 2.4GHz are potentially compatible with most advanced electronic devices, and are also safe and secure. Also, wireless power delivery can operate the implanted device. In this thesis, a fully wireless and efficient visual cortical stimulator was designed to restore the sight of the blind. This system is likely to address 40% of the causes of blindness. In general, the system can be divided into two parts, hardware and software. Hardware parts include a wireless power transfer design, the communication device, power management, a processor and the control unit, and the 3D design for assembly. The software part contains the image simplification, image compression, data encoding, pulse modulation, and the control system. Real-time video streaming is processed and sent over Bluetooth, and data are received by the LPC4330 six layer implanted board. After retrieving the compressed data, the processed data are again sent to the implanted electrode/optrode to stimulate the brain’s nerve cells
    corecore