1,146 research outputs found

    An Ant-based Approach for Dynamic RWA in Optical WDM Networks

    Get PDF

    A Novel Solution to the Dynamic Routing and Wavelength Assignment Problem in Transparent Optical Networks

    Full text link
    We present an evolutionary programming algorithm for solving the dynamic routing and wavelength assignment (DRWA) problem in optical wavelength-division multiplexing (WDM) networks under wavelength continuity constraint. We assume an ideal physical channel and therefore neglect the blocking of connection requests due to the physical impairments. The problem formulation includes suitable constraints that enable the algorithm to balance the load among the individuals and thus results in a lower blocking probability and lower mean execution time than the existing bio-inspired algorithms available in the literature for the DRWA problems. Three types of wavelength assignment techniques, such as First fit, Random, and Round Robin wavelength assignment techniques have been investigated here. The ability to guarantee both low blocking probability without any wavelength converters and small delay makes the improved algorithm very attractive for current optical switching networks.Comment: 12 Pages, IJCNC Journal 201

    Spare capacity modelling and its applications in survivable iP-over-optical networks

    Get PDF
    As the interest in IP-over-optical networks are becoming the preferred core network architecture, survivability has emerged as a major concern for network service providers; a result of the potentially huge traffic volumes that will be supported by optical infrastructure. Therefore, implementing recovery strategies is critical. In addition to the traditional recovery schemes based around protection and restoration mechanisms, pre-allocated restoration represents a potential candidate to effect and maintain network resilience under failure conditions. Preallocated restoration technique is particularly interesting because it provides a trade-off in terms of recovery performance and resources between protection and restoration schemes. In this paper, the pre-allocated restoration performance is investigated under single and dual-link failures considering a distributed GMPLSbased IP/WDM mesh network. Two load-based spare capacity optimisation methods are proposed in this paper; Local Spare Capacity Optimisation (LSCO) and Global Spare Capacity Optimisation (GSCO)

    Considering Transmission Impairments in Wavelength Routed Networks

    Get PDF
    Abstract — We consider dynamically reconfigurable wavelength routed networks in which lightpaths carrying IP traffic are on demand established. We face the Routing and Wavelength Assignment problem considering as constraints the physical impairments that arise in all-optical wavelength routed networks. In particular, we study the impact of the physical layer when establishing a lightpath in transparent optical network. Because no signal transformation and regeneration at intermediate nodes occurs, noise and signal distortions due to non-ideal transmission devices are accumulated along the physical path, and they degrade the quality of the received signal. We propose a simple yet accurate model for the physical layer which consider both static and dynamic impairments, i.e., nonlinear effects depending on the actual wavelength/lightpath allocation. We then propose a novel algorithm to solve the RWA problem that explicitly considers the physical impairments. Simulation results show the effectiveness of our approach. Indeed, when the transmission impairments come into play, an accurate selection of paths and wavelengths which is driven by physical consideration is mandatory. I
    • 

    corecore