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Abstract— We consider dynamically reconfigurable wave-
length routed networks in which lightpaths carrying IP traffic
are on demand established.

We face the Routing and Wavelength Assignment problem
considering as constraints the physical impairments that arise
in all-optical wavelength routed networks. In particular, we
study the impact of the physical layer when establishing a
lightpath in transparent optical network. Because no signal
transformation and regeneration at intermediate nodes occurs,
noise and signal distortions due to non-ideal transmission
devices are accumulated along the physical path, and they
degrade the quality of the received signal. We propose a
simple yet accurate model for the physical layer which consider
both static and dynamic impairments, i.e., nonlinear effects
depending on the actual wavelength/lightpath allocation. We
then propose a novel algorithm to solve the RWA problem
that explicitly considers the physical impairments.

Simulation results show the effectiveness of our approach.
Indeed, when the transmission impairments come into play, an
accurate selection of paths and wavelengths which is driven by
physical consideration is mandatory.

I. INTRODUCTION

Wavelength Routed (WR) networks are considered the
best candidate for the short-term implementation of a high-
capacity IP infrastructure, since they permit the exploitation
of the huge fiber bandwidth, but do not require complex
processing functionalities in the optical domain.

In WR networks, remote high-capacity (electronic)
routers are connected through IP-tunnels. IP tunnels are
implemented by optical pipes called lightpaths that may
extend over several physical links. Lightpaths are routed
in the optical layer through the physical topology using a
single wavelength (we do not assume to exploit wavelength
conversion); at intermediate nodes, incoming wavelengths
belonging to in-transit lightpaths are switched to outgoing
fibers through an optical cross-connect that does not process
in-transit information. At the IP layer, lightpaths are seen
as data-link channels through which packets are moved
from a router to another router toward their destinations
following the classic IP forwarding procedure. Therefore,
in a WR network, an IP layer topology (also called logical
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topology), whose vertexes are IP routers and whose edges
are lightpaths, is overlayed to the physical topology, made of
optical fibers and optical cross-connects (OXC). If the OXC
node implementation requires opto/electronic conversions,
the technology is usually called “opaque”. Otherwise, if
switching of lightpaths is fully performed in the optical
domain, the term “transparent” is used. In this second case,
the cost of switching a lightpath is almost independent on
the transmission data-rate [1]. In this paper we consider the
latter technology, which is also the most promising one.

Lightpaths can either be semi-permanent [2], or be al-
located in on-demand fashion [3]. In the first case a static
topology is seen at the IP layer, while in the second case
more adaptivity can be gained at the cost of additional
complexity both at the optical layer and the IP layer. In this
paper we consider dynamically reconfigurable WR networks
in which lightpaths are on demand established.

In classic WR networks that support the dynamic allo-
cation of lightpaths according to user requests, the Rout-
ing and Wavelength Assignment (RWA) problem must be
faced. Indeed, for each connection request, a route across
the physical topology must be found, and a wavelength
must be selected with the constrains that i) two (or more)
lightpaths sharing the same fiber must be identified by two
(or more) different wavelengths (also called “wavelength
integrity constraint”) and ii) a lightpath must be identified
by the same wavelength on all the physical fibers along the
path (also called “wavelength continuity constraint”). If such
a path/wavelength exists, a point-to-point lightpath is estab-
lished for the duration of the connection. On the contrary,
the connection may be blocked given the limited number
of wavelengths supported by fibers and OXCs. The goal of
the RWA is therefore to minimize the connection blocking
probability, and several algorithms have been proposed to
address this problem [4].

RWA problem is a classic problem in the context of wave-
length routed networks. However, despite several solutions
have been proposed, most of them fail to consider the impact
of the physical layer on the data transmissions. Indeed, in
the definition of the RWA problem, only the availability of
a wavelength is considered as constraint in the formulation
of the problem itself. Considering opaque networks, this is
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a realistic assumption, as the optical signal is regenerated
ad each node, and transmission impairments are therefore
compensated at each node. But this is not anymore the case
when transparent optical networks are considered.

In a transparent all-optical network, because no signal
transformation and regeneration at intermediate nodes oc-
curs, noise and signal distortions incurred due to non-ideal
transmission devices are accumulated along the physical
path, and they degrade the quality of the received signal.
Noise accumulation actually decreases the Optical Signal
to Noise Ratio (OSNR) increasing the corresponding Bit
Error Rate (BER). Distortions due to fiber propagation
modify the shape of the received pulse inducing performance
impairments equivalent to a reduction of the OSNR. In
this paper, besides considering the noise accumulation, we
evaluate the impact of the linear and nonlinear fiber prop-
agation with the purpose to obtain an equivalent OSNR
characterizing each lightpath of the considered transparent
optical network. If for a certain lightpath the OSNR is too
low, the corresponding BER may exceed the maximum
tolerable BER imposed by the transmission techniques
employed. In that case the lightpath becomes not usable
and such an information must be taken into account by the
RWA algorithms. The OSNR information can be also used
as soft parameter giving a weight of the goodness of the a
lightpath allowing to implement RWA algorithms based on
the choice of the lightpath with the best OSNR among all
the usable ones.

In this paper, we consider a transparent optical network,
in which lightpath requests are dynamically set-up. When
solving the RWA problem, we explicitly take into account
the physical impairments imposed by the optical layer. In
particular, for the first time to the best of our knowledge,
we consider the effect of nonlinearities which arise when
considering dynamic wavelength allocation on optical fibers.
In particular, nonlinearities strongly depend on the current
allocation of wavelength on a given fiber (and path), and
therefore on the current status of allocated lightpaths on
the top of the physical topology. This intuitively affects
the RWA problem solution of new lightpath requests: the
selection of a suitable path and suitable wavelength may
fail to meet the minimum transmission requirement. But
it may also affect already established lightpaths whose
transmission properties are negatively affected by the new
establishing lightpath. Hence, we propose a novel routing
and wavelength assignment algorithm (called Best-OSNR)
which explicitly tries to minimize the impact of physical
impairments.

In the remaining of the paper, Section II describes the
physical layer model used to evaluate the transmission qual-
ity of a lightpath, including a brief comparison with related
work. Section III focuses on the RWA algorithm adopted
in this paper whose performance results are presented in

Section IV. Finally, Section V summarizes our findings.

II. PHYSICAL MODEL

In order to analyze the evolution of the electromagnetic
signals through a transparent optical network based on the
Wavelength Division Multiplexing (WDM) technique, the
wave equation for the fiber optic propagation should be
solved for every optical link. Since the optical fiber is a
nonlinear medium, the wave equation that regulates the
propagation is the so called Nonlinear Shroedinger Equation
(NLSE) [5] whose expression is:

∂A(z, t)
∂z

= −αA(z, t)+j
1
2
β2

∂2A(z, t)
∂t2

−jγ |A(z, t)|2 A(z, t)
(1)

where A(z, t) is the modal amplitude of the electromagnetic
field propagating in the optical fiber, α is the fiber loss
coefficient, β2 is the dispersion coefficient, γ is the nonlinear
coefficient, and z and t are the propagation direction and
time, respectively. Note that A(z, t) must include all the
modulated signals associated to the wavelengths in use,
because the nonlinear nature of the problem does not allow
to solve separately - wavelength by wavelength - the signal
propagation in optical fibers. Besides the model for the
propagation of optical signals through the fiber, the other
component that must be accurately considered is the optical
amplifier, e.g., the Erbium-Doped Fiber Amplifier (EDFA).
EDFA’s are used to recover the fiber loss introduced by
the fiber spans but impair the system performance by intro-
ducing a certain amount of noise, that is called Amplified
Spontaneous Emission (ASE) Noise. Given the amount of
gain G and the spontaneous emission factor nsp, the power
spectral density of noise introduced by the amplifier is [6]:

GASE(f) = 2 nsp(G − 1)hf (2)

where h is the Planck constant and f is the operation
frequency.

The analysis presented in this paper is focused on the
use of EDFAs to recover fiber attenuation, but it can be
easily extended in order to include the use of the promising
technology based on Raman Amplification [5], [6] or, in
general, the use of mixed EDFA/Raman technologies [7].

As well as the transmission components, i.e., fiber and
amplifiers, the transmitters and receivers should be modeled
in order to include in the performance analysis their effects
and potential system impairments.

The other network blocks to be modeled are the passive
components such as filters, and, in general, all the elements
performing optical network operations. For instance, the
add-drop multiplexers and the optical cross-connects.

Due to the nonlinear nature of Eq. (1), the evolution of the
optical signals along a transparent optical network should
be studied as a single complex problem. Eq. (1) should be
solved simultaneously for all the fiber links considering the
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boundary conditions, i.e., transmitters and receivers, and,
in general, network nodes. Furthermore, Eq. (1) does not
admit analytical solutions, therefore it must be integrated
numerically using simulators that typically are based on
the Split-Step Fourier Method [8], [9]. It means that the
performance evaluation of a single network configuration
could require a relevant computational effort, e.g., hours
of CPU time with the present state-of-the-art computers.
Hence, it is not possible to setup a RWA analysis that
requires to evaluate the network performance for possible
millions different network configurations, i.e., millions ex-
tremely time consuming simulations of the physical layer.

In order to overcome the computational limits introduced
by the complexity of the exact analysis of the physical
level of transparent optical networks, many approximated
solutions were presented in the technical literature.

In [10], [11], the authors consider independently the im-
pairments due to the effect of Polarization Mode Dispersion
(PMD) and accumulated ASE noise. The authors considered
the use of Raman amplifiers besides EDFAs. The analysis
is done for each lightpath and they consider that lightpath
performs well if both the requirements in terms of noise
accumulation (ASE) and PMD are satisfied. In these works,
the effect of fiber nonlinearities is not considered: it implies
neglecting the fundamental trade off between increasing
of transmitted power to overcome noise impairments and
limiting the power to avoid the impact of nonlinearities.
Similarly, in [12], [13] the authors considered only the
impairments of optical ASE noise introduced by the in-line
EDFAs and of electrical noise of the receivers. A different
approach to the problem was presented in [14], the authors
proposed to completely separate the transmission layer from
control layer. The transmission layer was analyzed by the
Optical Viability Engine (OVE) that gives to the control
layer the binary information (connection viable or non-
viable). The OVE can be a calculator, a rule-set or a
complete simulator.

We target our analysis to the inclusion in performance
evaluation of lightpaths the effect of accumulated ASE
noise, linear and nonlinear propagation. To the best of
our knowledge this is the first time nonlinear effects are
included in the performance evaluation of physical layer of
optical networks in order to drive the RWA algorithms with
the physical impairments on each lightpath. The simplified
model we propose is based on the separation of the effects
impairing the signal propagation in order to evaluate the
Optical Signal-to-Noise Ratio (OSNR) penalty induced
by each effect. We start from the assumption that the
performance in terms of Bit Error Rate (BER) of an optical
link based on the optical amplification is well approximated
by :

BER ≈ 1
2
e−η OSNR (3)

where η is a coefficient assuming values in [0, 1] that takes
into account how close to the ideal one is the receiver
used; η = 1 for the ideal receiver based on the optical
filter matched to the transmitted pulse. Using Eq. 3 we
neglected the influence of receiver electric noise. It is
a reasonable assumption for optical networks based on
the optical amplification, since the ASE noise is typically
widely prevalent with respect to the electric noise. In case
of studying networks without an extensive use of optical
amplification, Eq. 3 can be replaced by a more complex
one including the electric noise without varying the general
structure of the presented analysis.

For the optimal receiver, the exact expression can be
analytically derived and it is [15]:

BER =
1
2

{
e−φ (1 + φ) + 1 − Q2

(√
8 OSNR,

√
2φ

)}

(4)
where Q2 is the Marcum Q-function of order 2 [15] and φ
is the normalized decision threshold that must be optimized
for each value of the OSNR. Eq. 3 derives from a fitting of
Eq. 4 for optimal threshold and small (below 10−3) BER.
The OSNR is given by:

OSNR =
PS

PN
(5)

where PS is the power of the modulated signal carrying the
information and PN is the overall power of the ASE noise
introduced by the in-line optical amplifiers, i.e.,

PN =
i=Nspan∑

i=1

2nsp,i(Gi − 1)hfBn (6)

where M is the number of amplifiers for the lightpath under
analysis, nsp,i is the spontaneous emission factor for the i-
th amplifier, Gi is the gain for the i-th amplifier and Bn is
the equivalent noise bandwidth of the receiver.

Using Eq. 3, BER of a lightpath is directly related to the
OSNR. Therefore, if we define BERmax as the maximum
error probability tolerable by the transmission technique
used by the network under analysis, a lightpath can be
considered as in service if presents a BER smaller than
BERmax. Alternatively, the lightpath is in service if

OSNR > OSNRmin =
1
η

ln
(

1
2 BERmax

)
, (7)

therefore, to distinguish between different lightpaths within
the application of a RWA, the OSNR is a parameter to be
maximized in order to minimize the error rate. Furthermore,
the use of a certain lightpath must be discarded if the related
OSNR results to be smaller than OSNRmin. This approach
is the one we followed in order to implement the RWA
algorithms described in details in Sec. III.

In case of propagation impairments, besides the ASE
noise accumulation, performance for each lightpath can be
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still evaluated using Eq. 3, substituting the Optical Signal-
to-Noise Ratio with an equivalent coefficient OSNReq <
OSNR that wants to include the effects of the considered
impairments. Therefore, the expression of OSNReq in dB
units can be described as follows:

OSNReq,dB = OSNRdB − OSNRpen,l − OSNRpen,nl

(8)
where OSNRdB is 10 times the logarithm of the OSNR
value due to the ASE noise accumulation expressed in dB
units. OSNRpen,l and OSNRpen,nl are the penalties -
expressed in dB units as well - introduced by the linear
(dispersion, PMD) and nonlinear (Kerr effect) propagation
effects [5], [16], respectively. OSNR penalties are caused
by the pulse distortions induced by the propagation effects
that impairs the decision signal - eye-diagram closure -
inducing a performance impairments equivalent to a certain
amount of extra noise. Either ASE noise accumulation,
either the eye-diagram closure due to the propagative linear
effects act separately on different wavelengths, indepen-
dently of the number of wavelengths in use on the fiber
span under analysis. Therefore, OSNRdB and OSNRpen,l

depend only on the path π and on the wavelength λ (static
network configuration), while OSNRpen,nl depends also
on the number of wavelengths Nλ actually turned on - for
the considered network configuration - per each fiber span
used by the lightpath λ (dynamic network configuration).
It means that the overall OSNReq,dB function must be
evaluated for each lightpath for each possible network
configuration and not just for each lightpath independently
of the network configuration. It is clearly understandable
how the problem complexity dramatically grows with the
inclusion of the propagation nonlinear effects.

A rigorous analysis of the physical effects on the perfor-
mance of an optical network should require the simulation
of the entire network for every possible configuration that
the RWA algorithms may take into account. As previously
explained, such a task should require millions of hours of
computation time. Hence, we decided to evaluate separately
the ASE noise accumulation, the impairments of linear
effects and the impairments of nonlinear effects. Here is
the description of the approximations we used in order to
derive the impairments due to the considered effects.

• ASE Noise accumulation.
The graph describing the network is analyzed in order
to individualize the amplifiers, fiber losses, and lumped
losses. Then, for each physical path, the accumulated
ASE noise is evaluated together with the signal level.
As a result, each lightpath is targeted with the corre-
sponding OSNRASE .

• Impairments of linear propagation effects.
In order to evaluate the impairments of linear effects
(PMD and dispersion), for each lightpath the amount of
accumulated dispersion and PMD is evaluated. Then,

penalties are evaluated according to the results pre-
sented in [16], [17]. If the dispersion compensation is
applied and the overall PMD is small with respect to the
bit duration, impairments of linear propagation effects
can be neglected. In general from the analysis of linear
propagation the penalty OSNRpen,l is derived. In case
of linear effects negligible, OSNRpen,l = 0 dB.

• Impairments of nonlinear propagation effects.
Nonlinearities in optical fibers are caused by the phys-
ical effect called Kerr Effect. Its effect is a locale
change of the refractive index as a function of the
overall propagating optical power. Kerr effect induces
well know impairments on the propagating signal that
can be classified as [5], [16]: Self Phase Modulation
(SPM), i.e., the modulation of the phase of a signal
induced by variation in time of the power of the signal
itself; Parametric Gain (PG), i.e., the transfer of power
from a signal to the adjacent spectral components;
Cross-Phase Modulation (XPM), i.e., the modulation
of the phase of a signal induced by variation in
time of the the overall power of the comb of WDM
channels propagating in the fiber; Four Wave Mixing
(FWM), i.e., the generation of spurious tones at new
frequencies. In commercial WDM systems, the non-
linear limiting effect is typically the XPM [18], [19],
[20], [21]. Therefore, we focus our attention in the
evaluation of the OSNR penalty due to the XPM.
In order to pursue such a target, we assume that this
penalty is a monotone increasing function with number
of wavelength actually in use on the fiber and with
power per channel. Whereas we assume it decreases
with the increasing of dispersion and channel spacing.
These are well known general behaviors, but the exact
expression of the function is not known. Therefore,
we performed a series of Monte-Carlo simulations on
a defined test-link using the optical system simulator
OptSimTM [22] 1. From the results of these simulations
we deduced an empirical function giving OSNRpen,nl

from the knowledge of the fiber characteristics, the
number of wavelengths turned on, the length of the
fiber span and the transmitted power. This function
was actually a look-up-table derived from simulations.
Using OptSim we evaluated the interference due to the
non linear effect in several situations. We propagated an
un-modulated (continuous wave) channel together with
Nch modulated channels, with Nch = 2, 4, 6, ..., 32.
We varied the channel power, channel spacing and
dispersion. Furthermore, we carried out Monte-Carlo
simulations in order to average the results with respect
to the bit sequences and bit-edge alignments. The

1Note that OptSimTM uses a propagation numerical model called
Time-domain split-step method [8], [9], that is the time domain
implementation of the well-know Split-Step Fourier Method [5].
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resulting interference, as expected, was a monotone
”logarithm like” function with respect to the number of
channels, whereas the interference decreases with the
increasing of dispersion magnitude and channel spac-
ing, and increases with the increasing of channel power.
From this function, knowing the network characteristics
from its graph description and the wavelength assign-
ment, OSNRpen,nl is evaluated. Of course this penalty
depends on the dynamic reconfiguration of the network
because it varies with the number of wavelengths in
use for each fiber and with their spectral assignments.
In the evaluation of non linear impairments we always
considered the worst case situation in terms of channel
spacing, i.e., given the number of channel turned on
a fiber span, we considered that all the channels were
uniformly spaced with the minimum channel spacing.

Considering the separate evaluation of impairments due
to the considered effects, for each possible lightpath of
the network, the physical layer analysis was able to pro-
vide to the RWA algorithms a function OSNR(π, λ) =
OSNRASE − OSNRpen,l − OSNRpen,nl. The value of
such a function, given a path π and a wavelength λ, is
a constant for a static network, while changes in case of
dynamic re-configuration of the network because it depends
also on the number of wavelengths actually in use on each
fiber span.

III. RWA ALGORITHMS

To gauge the impact of physical impairments on the
RWA solution, we compare the performance of traditional
RWA algorithms to the one obtained by a novel algorithm
which considers the physical impairments when solving the
RWA problem. We first describe traditional algorithms while
also introducing the notation, and then describe the novel
algorithm.

A. Traditional Algorithms

To solve the RWA problem, we selected two algorithms
that were shown to give good performance: the First Fit-
Minimum Hop (FF-MH) and First Fit-Least-Congested (FF-
LC) [4]. These are traditional algorithm, which split the
RWA problem into two simpler sub-problems: first a suitable
path is selected, and then a suitable wavelength is allocated
if available on the selected path.

In more details, when searching for available wavelengths
on a given path, a First-Fit strategy is used: a lower
numbered wavelength is considered before higher numbered
wavelengths, and the first available wavelength is then
selected by both algorithms.

As regards the path selection, for each source/destination
pair, the FF-MH algorithm considers only one possible path,
which has been preselected to be the minimum hop path. In
case more than one minimum hop path is present between

the same source/destination pair, only one is considered (in
particular, the first minimum hop path found is selected).
Dijkstra algorithm can be used to obtain the minimum hop
path.

The FF-LC algorithm, instead, considers a pre-ordered list
of available paths for each source/destination pair. Paths are
dynamically sorted, so that always the least congested path
is tested first. The “congestion” metric counts the number
of wavelengths already used on a fiber, so that the path
with the largest number of unused wavelengths is chosen.
In case more than least congested path exists, (one at random
among) the shortest path will be selected For the purpose
of providing a formal description of the algorithms, we use
a standard graph theory formalism. Thus, we refer to the
generic physical network as a directed graph G = (V, E),
where V is the set of vertexes (nodes, in our case), and E
is the set of edges (links)2.

A path π(s, d) of length n(π(s, d)) = ||π(s, d)|| is defined
as a sequence of n distinct edges ei joining s and d, where
s, d ∈ V , ei ∈ E , π(s, d) = {e1, e2, ..., en}.

Let Π(s, d) = {πi(s, d)} be the set of available loop-free
paths from node s to node d. Let W (ei) be the number of
wavelength already allocated on link ei.

Given those definitions, the Minimum Hop routing will
select the path πMH(s, d) such that

πMH(s, d) = min
π∈Π(s,d)

n(π)

On the contrary, the Least Congested path πLC(s, d) will
be selected such that:

πLC(s, d) = min
π∈Π(s,d)

(
max
ei∈π

(W (ei)) +
1
c
n(π)

)

The constant c must be selected such that

c > max
π∈Π(s,d)

(n(π))

Notice that the MH path selection can be performed off-line,
being n(π) constant with respect to wavelength allocation.
On the contrary, the implementation of the LC path selection
criterion requires each route to be selected for each lightpath
request, thus entailing a much larger complexity, both in
term of computational power and signaling.

Once a path has been selected, the wavelength allocation
is performed using the first-fit approach by both algorithms.
Let Λ(ei) = {λj , j = 1, . . . , L} be the ordered set of
supported wavelength on link ei. Let F (λj(ei)) take the
value 0 if the j-th wavelength is free on link ei, 1 otherwise.
Then, the set F of available wavelength on path π(s, d) is
defined as

F = {λj such that F (λj(ei)) = 0 ∀ei ∈ π(s, d)}
2In this paper we interchangeably use the terms ‘edges’ and

‘links’ and the terms ‘vertexes’ and ‘nodes’.
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Fig. 1. Physical topology.

Then, lightpath request will be allocated using wavelength
λ̂ on path π(s, d) such that:

λ̂ = min
j

(λj ∈ F)

B. B-OSNR algorithm

Traditional algorithms fails to consider the physical im-
pairments that may affect the transmission on a given
path/wavelength. We therefore propose a novel algorithm,
called Best-Optical Signal Noise Ratio (B-OSNR), which
will jointly assign to a given request a path and a cor-
responding wavelength. In particular, the path/wavelength
solution which will present the maximum OSNR will be
selected. Let OSNR(π(s, d), λj) be the OSNR on wave-
length λj on path π(s, d). OSNR(π(s, d), λj) = −∞ if λj

is not usable on path π(s, d). Then, the path πOSNR(s, d)
and the wavelength λOSNR will be selected such that:

(πOSNR(s, d), λOSNR) = max
π∈Π(s,d)

(
max
λ∈Λ

OSNR(π, λ)
)

As can be noticed, the B-OSNR algorithm jointly assigns
a path and a wavelength to a given lightpath request. Its
complexity grows linearly with the number of paths and the
number of wavelengths that must be checked to find the best
solution.

IV. PERFORMANCE ANALYSIS

To gauge the impact of the physical constraints on the
routing and wavelength assignment, we developed a simu-
lator which implements all the RWA algorithms described
in the previous section, and performs the evaluation of
the OSNR as described in Section II. To this purpose,
the description of the physical topology by means of a
graph G, which includes the definition of fibers, amplifiers,
optical cross connects, etc., is given as input. In particular
we assumed that the network is cabled using Non-Zero

Dispersion Shifted fibers. In order to recover fiber losses
we considered to use EDFAs spaced Lspan km that perfectly
recover the loss introduced by the fiber span. We supposed
the employed EDFAs are perfectly spectrally equalized and
have flat transfer functions, providing the same amount of
gain for all the wavelengths. We explored different scenarios
analyzing the network behaviors for Lspan = 40, 60, 80 km.
We assumed to use dispersion compensation techniques and
that the PMD effect is negligible at the supposed bit-rate of
10 Gbit/s. Therefore, we supposed to be negligible the prop-
agation linear effects focusing our analysis on considering
the limiting effects of noise accumulation and impairments
of fiber nonlinearities. Regarding the effects of passive
components performing network operations within the nodes
(filters, add-drop multiplexers, optical cross-connects, etc...)
we considered the extra losses that they introduce. We did
not include they filtering effect.

A description of the traffic pattern completes the scenario
whose performance indexes will be analyzed during the
simulation. The traffic description includes a traffic matrix
T = {ts,d} whose elements ts,d represent the fraction of
lightpath requests from node s to node d. Lightpath requests
are generated according to a Poisson process of rate ρts,d,
in which ρ represent the average arrival rate in connection
per seconds. Connection holding time is exponentially dis-
tributed, with average set to 1 which therefore fixes the time
reference in the simulation.

Once a connection request is generated, the corresponding
RWA problem is solved according to the selected algorithm.
If a path π and a free wavelength λ are available, the
corresponding OSNR is evaluated, and if it is above to a
given OSNRmin threshold, then the lightpath is accepted,
and the corresponding λ is allocated on all links of path π.
Otherwise, the lightpath request is blocked and no reserva-
tion occurs. Allocated resources will then be released at the
end of the connection lifetime.

As performance indexes, the average blocking probabil-
ity Pb is evaluated. In particular, to asses the impact of
the OSNR limitation, the simulator evaluates the blocking
probability due to physical impairments (POSNR

b ) and the
blocking probability due to lack of available wavelength
(Pλ

b ). The first one is defined as the ratio between the
number of lightpath requests which were blocked because
the OSNR level on the selected (free) wavelength was below
the minimum threshold with respect to the total number
of lightpath requests. Pλ

b accounts for blocked lightpath
requests due to lack of available free wavelength. Clearly
Pb = POSNR

b + Pλ
b .

In the simulation result reported in this paper, we con-
sidered as physical topology the Italian Optical Network
sketched in Fig. 1 which was derived from a possible
evolution of the Telecom Italia network topology. Nodes
reflect the real position of cities and link lengths reflect the
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real distances among cities. All fiber and nodes are assumed
to be physically equal. Maximum number supported wave-
length L is set to 16.

We consider three different physical configurations, which
differ by the maximum span of fibers that is admissible
without requiring regeneration, i.e, the maximum length of
optical fiber between two adjacent amplifiers. In particular,
spans of 40 km, 60 km, 80 km will be considered. The
longer is the fiber span, the larger is the amount of gain
required to recover fiber losses. Hence, the larger is the
amount of noise introduced by the amplifiers. To restore
the target OSNR a larger amount of transmitted power can
be employed, but with the increasing of transmitted power
the effect of nonlinearities progressively grows inducing a
stronger impairment on performance.

Regarding the traffic pattern, we consider in this paper
a simple uniform traffic, in which all ts,d = 1. We set
OSNRmin = 20dB, corresponding to BER = 10−12 with
an OSNR margin of about 4 dB. During the path search
phase, the sets Π(s, d) are build by considering only those
paths whose minimum OSNR is larger than OSNRmin. The
minimum OSNR of a given path is evaluated by not con-
sidering the nonlinearities, i.e., by considering OSNR(π, λ)
when no other lightpaths is established on any other paths.
A limited number of path is considered for each source
destination pair, so that the complexity of finding πLC and
πOSNR is limited: paths in Π(s, d) are sorted in decreasing
number of hops, and then only the first 30 paths are
considered 3.

Finally, to get accurate results, each simulation was ended
when the performance indices were such that the 95%

3We considered larger sets of paths, but without observing major
differences on the results.
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Fig. 3. Average blocking probability due to OSNR impairment
versus offered load for different algorithms. Physical span of 40
km, 60 km, 80 km are presented.

confidence interval was within 5% of the point estimate.

A. Blocking probability

In Figures reported in this section, dashed lines refers to
the blocking probability obtained when the FF-LC algorithm
is considered, while solid lines report results considering the
B-OSNR. Different points are used to highlight different
span values.

Figure 2 plots the average blocking probability versus
offered load. Comparing the results obtained by the FF-LC
or the B-OSNR algorithm, it can be noticed that when the
impact of the OSNR introduced by the physical layer is
negligible, the FF-LC algorithm performs better than the
B-OSNR approach. Indeed, for small values of the offered
load and for small span values the FF-LC takes the lead,
while for both larger values of ρ and for span value set to
80km, the B-OSNR algorithm clearly outperforms the FF-
LC approach.

The intuition behind this is that the better allocation
of wavelength used by the FF approach tends to better
pack wavelength usage so that the change of obtaining a
free wavelength is larger. On the contrary, the wavelength
allocation performed by the B-OSNR algorithm tends to
spread out the wavelength as much as possible, so to
minimize the noise introduced by adjacent channels. This
leads to a larger blocking probability when the cause of
blocking is due to lack of wavelength.

On the contrary, for larger values of the offered load,
the effects due to nonlinearities clearly affect the block-
ing probability faced by a FF-LC algorithm. Indeed, its
more compact wavelength allocation criterion maximizes the
noise due to interfering wavelengths. Therefore, when the
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blocking probability is largely due to physical impairments,
the FF-LC algorithm cannot find any good solution.

Similarly, considering different network span configura-
tion, the B-OSNR approach shows little differences, show-
ing that it is able to overcome physical configuration which
offers worse OSNR. On the contrary, the FF-LC algorithm
present almost identical results when 40km and 60km span
long networks are considered, while the 80km span network
performance are much worse. This is due to the path
selection choice, which allows the FF-LC algorithm to select
longer paths which will cause larger transmission noise that
will be accumulated along the path itself, finally resulting
in a blocked lightpath due to lack of OSNR.

To better highlight this effects, Figure 3 plots the blocking
probability due to physical impairments. Considering the

40km and 60km span, the B-OSNR presents no blocking
due to lack of OSNR, while the FF-LC algorithm shows
a steep increase of the blocking probability due to trans-
mission impairments. This confirms the intuition the the
nonlinearities faced by the FF-LC wavelength allocation
(and path selection) are the largest cause of blocking.

Similarly, considering the 80km span long network, the
FF-LC algorithm is not able to find any suitable path and
wavelength solution to the RWA problem even when the
nonlinearities are small, i.e., when then offered load is small
so that few lightpath are present at the same time.

Finally, to gauge the ratio between the blocking due
to wavelength lack or to OSNR lack, Figure 4 plot the
percentage of blocking probability due to OSNR degradation
versus the offered load. It confirms the previous observation,
by showing that the B-OSNR algorithm is only marginally
affected by the lack of OSNR. On the contrary, the FF-LC
approach faces the majority of blocking probability because
the selected wavelength and path cannot offer an adequate
OSNR level.

To better observe the effect of nonlinearities on the block-
ing probability, Figure 5 plots the total average blocking
probability versus the span for offered load equal to 0.4. The
plot also reports results considering the FF-MH algorithm.
Its performance are in general limited when compared to
algorithms that allow to test more than a single path, as
already well-known [4]. The B-OSNR algorithm presents
the best results, about one or two order of magnitude better
than results presented by classic algorithms which fail to
consider physical impairments.

In particular, considering span smaller than 80km, the
static impairments due to the physical layer are negligible, as
no major differences are observed moving from 40km long
span to 60km long span physical configuration. Increasing
the span length to 80km, on the contrary the blocking prob-
ability of the FF-LC algorithm increases. This performance
downgrade is largely due to the selection of possibly longer
and more noisy paths. The FF-MH algorithm is little affected
by this, as it always select the minimum hop path which in
general is also the shortest one and therefore the one which
presents the smaller noise due to linear effects. Still, a little
increase in the blocking probability is due to the smaller
static OSNR ratio which, combined with the nonlinearity
noise, increases the chance of observing a OSNR larger then
OSNRmin.

V. CONCLUSIONS

In this paper we considered a transparent optical network.
By using wavelength routed technology, we considered the
routing and wavelength assignment problem under trans-
mission impairments. We considered a dynamic scenario,
in which lightpath requests arrive and leave the network.
Because in transparent optical network no signal transfor-
mation and regeneration at intermediate nodes occurs, noise
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and signal distortions due to non-ideal transmission devices
are accumulated along the physical path, and they degrade
the quality of the received signal. This affects the availability
of the optical channel, and therefore must be considered
during the RWA solution. We presented a novel simple
physical model to evaluate the OSNR ratio which considers
both static noise due to optical components and nonlinearity
effects due to the current wavelength allocation and usage.

We then presented a novel algorithm which tries to min-
imize the effect of transmission impairments when solving
the RWA problem for each lightpath requests. Simulation re-
sults showed that, when the transmission impairments comes
into play, an accurate selection of path and wavelength
which is driven by OSNR is mandatory.

In particular, both static effects and nonlinearities can
largely affect the blocking probability: the first one depend
on the physical configuration and must be considered for any
offered load to the network; the latter one rapidly degrades
the quality of the transmission layer when the number of
lightpath already established is large, i.e., when the offered
load is higher. In such scenarios, the proposed B-OSNR
algorithm outperforms traditional algorithms which fails to
consider the physical impairments.
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