4,238 research outputs found

    Blockchain based End-to-end Tracking System for Distributed IoT Intelligence Application Security Enhancement

    Get PDF
    IoT devices provide a rich data source that is not available in the past, which is valuable for a wide range of intelligence applications, especially deep neural network (DNN) applications that are data-thirsty. An established DNN model in turn provides useful analysis results that can improve the operation of IoT systems. The progress in distributed/federated DNN training further unleashes the potential of integration of IoT and intelligence applications. When a large number of IoT devices deployed in different physical locations, distributed training allows training modules to be deployed to multiple edge data centers that are close to the IoT devices to reduce the latency and movement of large amounts of data. In practice, these IoT devices and edge data centers are usually owned and managed by different parties, who do not fully trust each other or have conflicting interests. It is hard to coordinate them to provide an end-to-end integrity protection of the DNN construction and application with classical security enhancement tools. For example, one party may share an incomplete data set with others, or contribute a modified sub DNN model to manipulate the aggregated model and affect the decision-making process. To mitigate this risk, we propose a novel blockchain based end-toend integrity protection scheme for DNN applications integrated with an IoT system in the edge computing environment. The protection system leverages a set of cryptography primitives to build a blockchain adapted for edge computing that is scalable to handle a large number of IoT devices. The customized blockchain is integrated with a distributed/federated DNN to offer integrity and authenticity protection services

    Federated Deep Learning for Cyber Security in the Internet of Things: Concepts, Applications, and Experimental Analysis

    Get PDF
    In this article, we present a comprehensive study with an experimental analysis of federated deep learning approaches for cyber security in the Internet of Things (IoT) applications. Specifically, we first provide a review of the federated learning-based security and privacy systems for several types of IoT applications, including, Industrial IoT, Edge Computing, Internet of Drones, Internet of Healthcare Things, Internet of Vehicles, etc. Second, the use of federated learning with blockchain and malware/intrusion detection systems for IoT applications is discussed. Then, we review the vulnerabilities in federated learning-based security and privacy systems. Finally, we provide an experimental analysis of federated deep learning with three deep learning approaches, namely, Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), and Deep Neural Network (DNN). For each deep learning model, we study the performance of centralized and federated learning under three new real IoT traffic datasets, namely, the Bot-IoT dataset, the MQTTset dataset, and the TON_IoT dataset. The goal of this article is to provide important information on federated deep learning approaches with emerging technologies for cyber security. In addition, it demonstrates that federated deep learning approaches outperform the classic/centralized versions of machine learning (non-federated learning) in assuring the privacy of IoT device data and provide the higher accuracy in detecting attacks
    • …
    corecore