1,472 research outputs found

    Blockchain Based Decentralized Applications & Trust Management for VANETs

    Get PDF
    Decentralized vehicular Ad-hoc Networks (VANETs), a promising technology to improve the Intelligent Transportation System (ITSs), face severe lagging in actual deployment and its extensive usage due to major unresolved issues such as security, data reliability, user privacy, and safe routing protocols. To overcome these issues, there is an urge to identify a platform that best suits VANET's easy deployment and usage in a decentralized fashion. In this regard, blockchain has received much attention as an emerging technology to provide better security on data sharing among many participants without an intermediary. This thesis aims to investigate blockchain technology's capability to secure vehicular data and vehicular node trust scores over a tamper-proof decentralized ledger that guarantees security, immutability, and accountability in Peer-to-Peer (P2P) networks such as VANET.Firstly, we explore how to leverage blockchain technology to design a specific application in the domain of decentralized VANETs, such as ride-sharing. We analyze the decentralized architecture for this application using smart contracts, and through experiments, we evaluate the costs associated with it. This framework serves as a basis for our further study to solve more challenging research problems in the consensus algorithm. The choice of a consensus algorithm directly affects the performance of a blockchain-based system in terms of transaction confirmation delays. In a VANET based on blockchain, the Proof of Work (PoW) and Proof of Stake (PoS) consensus might not be the best selection due to resource constraints and unfairness, respectively. In an attempt to improve consensus in a VANET application based on blockchain, we present the design of a novel consensus mechanism named Proof Of Driving for our previously presented ride-sharing application. We demonstrated that POD clubbed with a real-time service standard score protocol efficiently optimizes the number of miner nodes. The extensive experimental and security analyses presented on proposed consensus and service standard protocols demonstrate the effectiveness, security, and feasibility of miner node selection. However, VANET is not secure as vehicular communication is critically vulnerable to several kinds of active and passive routing protocol attacks. The most severe attack in routing is the Black Hole attack, which deteriorates the network's performance by dropping or misusing the intercepted data packets without forwarding them to the correct destination. This greatly hinders the application availability. Hence in the final chapter of this thesis, we experiment by incorporating trust models in VANET routing protocols to achieve a more efficient packet forwarding process. The results showed an improved packet delivery ratio and throughput of the entire network. The trust model should be able to resist various attacks and preserve the privacy of vehicles simultaneously. Hence we presented how to leverage consortium blockchain to secure vehicles' trust scores and distribute node trust in a decentralized network more efficiently. We evaluated the trust score aggregation process by the authorized RSUs, the time consumed for consensus, and updated trust score distribution. The results showed that the blockchain-based trust management provides an effective trust model for VANETs with transparency, conditional anonymity, efficiency, and robustness while efficiently eliminates the black hole nodes

    Towards Secure Blockchain-enabled Internet of Vehicles: Optimizing Consensus Management Using Reputation and Contract Theory

    Full text link
    In Internet of Vehicles (IoV), data sharing among vehicles is essential to improve driving safety and enhance vehicular services. To ensure data sharing security and traceability, highefficiency Delegated Proof-of-Stake consensus scheme as a hard security solution is utilized to establish blockchain-enabled IoV (BIoV). However, as miners are selected from miner candidates by stake-based voting, it is difficult to defend against voting collusion between the candidates and compromised high-stake vehicles, which introduces serious security challenges to the BIoV. To address such challenges, we propose a soft security enhancement solution including two stages: (i) miner selection and (ii) block verification. In the first stage, a reputation-based voting scheme for the blockchain is proposed to ensure secure miner selection. This scheme evaluates candidates' reputation by using both historical interactions and recommended opinions from other vehicles. The candidates with high reputation are selected to be active miners and standby miners. In the second stage, to prevent internal collusion among the active miners, a newly generated block is further verified and audited by the standby miners. To incentivize the standby miners to participate in block verification, we formulate interactions between the active miners and the standby miners by using contract theory, which takes block verification security and delay into consideration. Numerical results based on a real-world dataset indicate that our schemes are secure and efficient for data sharing in BIoV.Comment: 12 pages, submitted for possible journal publicatio

    Pay as You Go: A Generic Crypto Tolling Architecture

    Full text link
    The imminent pervasive adoption of vehicular communication, based on dedicated short-range technology (ETSI ITS G5 or IEEE WAVE), 5G, or both, will foster a richer service ecosystem for vehicular applications. The appearance of new cryptography based solutions envisaging digital identity and currency exchange are set to stem new approaches for existing and future challenges. This paper presents a novel tolling architecture that harnesses the availability of 5G C-V2X connectivity for open road tolling using smartphones, IOTA as the digital currency and Hyperledger Indy for identity validation. An experimental feasibility analysis is used to validate the proposed architecture for secure, private and convenient electronic toll payment
    corecore